Skip to main content
Log in

Symbiosis between a pelagic flatworm and a dinoflagellate from a tropical area: structural observations

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A morphological account on the endosymbiosis between Amphiscolops sp and Amphidinium sp is given, based on scanning and transmission electron microscopy observations. The algal symbionts (15–20 µm in diameter) are found among cells of the peripheral parenchyma. Amphidinium sp. has a single pyrenoid of the multiple-stalked type, with several chloroplast lobes radiating from it. A comparison with A. klebsii is made. Our observations reinforce the assumption of selectivity of Amphiscolops for the symbiotic genus Amphidinium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, O. R., 1983. Radiolaria. Springer-Verlag, New York, 355 pp.

    Google Scholar 

  • Antonius, A., 1968. Faunistische Studien am Roten Meer im Winter 1961/62, Teil IV. Neue Convolutidae and eine Bearbeitung des Verwandtschafts-kreises Convoluta (Turbellaria Acoela). Zool. Jb. Syst. Bd 95: 297–394.

    Google Scholar 

  • Dodge, J. D. & R. M. Crawford, 1968. Fine structure of the dinoflagellate Amphidinum carteri Hulbert. Prostilogica 4: 231–242.

    Google Scholar 

  • Dodge, J. D. & R. M. Crawford, 1971. A fine structural survey of dinoflagellate pyrenoids and food-reserves. Bot. J. linn. Soc. 64: 105–115.

    Google Scholar 

  • Dodge, J. D. & C. Greuet, 1986. Dinoflagellate ultrastructure and complex organelles. In F.J.R. Taylor (ed.), The biology of Dinoflagellates. Blackwell Sc. Publ. Oxford: 92–141.

    Google Scholar 

  • Douglas, A. E. (in litt.). John Innes Institute, Colney Lane, Norwich NR4 7UH, U.K.

  • Douglas, A. E., 1983(a). Establishment of the symbiosis in Convoluta roscoffensis. J. mar. biol. Ass. U.K. 63: 419–434.

    Google Scholar 

  • Douglas, A. E., 1983(b). Uric acid utilization in Platymonas convolutae and symbiotic Convoluta roscoffensis. J. mar. biol. Ass. U.K. 63: 435–447.

    Google Scholar 

  • Douglas, A. E., 1985. Growth and reproduction of Convoluta roscoffensis containing different naturally occurring algal symbionts. J. mar. biol. Ass. U.K. 65: 871–879.

    Google Scholar 

  • Douglas, A. E., 1988. Alga-invertebrate symbiosis. In: Rogers, L. J. & J. R. Gallon (eds), Biochemistry of the Algae and Cyanobacteria. Oxford Sci. Publ., Oxford: 297–309.

    Google Scholar 

  • Douglas, A. E. & G. W. Gooday, 1982. The behaviour of algal cells towards egg capsules of Convoluta roscoffensis and its role in the persistence of the Convoluta-alga symbiosis. Br. phycol. J. 17: 383–388.

    Google Scholar 

  • Fenchel, T., 1987. Ecology of Protozoa. Science Tech. Publ., Madison, Springer-Verlag, Berlin, 197 pp.

    Google Scholar 

  • Gaeta, S. A., D. S. Abe, S. M. Susini, R. M. Lopes & P. M. Metzler, 1990. Produtividade primaria, plâncton e covariáveis ambientais no canal de São Sebastião durante o outono. Rev. Brasil. Biol. 50: 963–974.

    Google Scholar 

  • Kofoid, C. A. & O. Swezy, 1921. The free-living unarmored dinoflagellates. Mem. Univ. Calif. 5: 1–562.

    Google Scholar 

  • Lopes, R. M. Zooplankton composition and distribution in the Guaraiú River estuary (São Paulo State, Brazil). Estuar Coast Shelf Sci.

  • Lopes, R. M., M. S. Almeida Prado Por & F. D. Por, 1986. Zooplankton seasonality in the Rio Verde estuary (Juréia, São Paulo, Brazil). Rev. Hydrobiol. trop. 19: 207–214.

    Google Scholar 

  • Marcus, E., 1950. Turbellaria Brasileiros (8). Bolm. Fac. Fil. Ciênc. Let. (São Paulo) 15: 5–141.

    Google Scholar 

  • Markell, D. A., R. K. Trench & R. 1. Prieto, 1992. Macromolecules associated with the cell walls of symbiotic dinoflagellates. Symbiosis 12: 19–31.

    Google Scholar 

  • Michaels, A. F., 1988. Vertical distribution and abundance of Acantharia and their symbionts. J. mar. biol. 97: 559–569.

    Google Scholar 

  • Muscatine, L., F. P. Wilkerson, L. R. McCloskey, 1986. Regulation of population density of symbiotic algae in a tropical marine jellyfish (Mastigias sp). Mar. Ecol. Prog. Ser. 32: 279–290.

    Google Scholar 

  • Namimatsu, S., 1992. Periodic acid thiosemicarbazide gelatin methenamine silver (PATSC-GMS) staining for transmission electron microscopy. J. submicrosc. Cytol. Pathol. 24: 19–28.

    Google Scholar 

  • Por, F. D., M. S. Almeida Prado Por & E. C. Oliveira, 1984. The mangal of the estuary and lagoon system of Can anéia (Brazil). In F. D. Por & I. Dor (eds), Hydrobiology of the Mangal. Dr W. Junk Publishers, The Hague: 211–228.

    Google Scholar 

  • Provasoli, L., T. Yamasu & I. Manton, 1968. Experiments on the resynthesis of symbiosis in Convoluta roscoffensis with different flagellate cultures. J. Mar. Biol. Ass. U.K. 48: 465–479.

    Google Scholar 

  • Rohde, K. N. Watson & L. R. G. Cannon, 1988. Ultrastructure of epidermal cilia of Pseudactinoposthia sp. (Platyhelminthes, Acoela); implications for the phylogenetic status of the Xenoturbellida and Acoelomorpha. J. submicrosc. Cytol. Pathol. 20: 759–767.

    Google Scholar 

  • Soyer, M. O. & O. K. Haapala, 1974. Structural changes of Dinoflagellate chromosomes by pronase and ribonuclease. Chromosoma (Berl.) 47: 179–192.

    Google Scholar 

  • Soyer-Gobillard, M. O. & M. L. Geraud, 1992. Nucleolus behaviour during the cell cycle of a primitive dinoflagellate eukaryote, Prorocentrum micans Ehr., seen by light microscopy and electron microscopy. J. Cell Sci. 102: 475–485.

    Google Scholar 

  • Spero, H. J. & S. L. Parker, 1985. Photosynthes in the symbiotic planktonic foraminifer Orbulina universa, and its potential contribution to oceanic primary productivity. J. Foram. Res. 15: 273–281.

    Google Scholar 

  • Stoecker, D. K., 1991. Mixotrophy in marine planktonic ciliates: physiological and ecological aspects of plastidretention by gligotrichs. In P. C. Reid, C. M. Turley & H. Burkill (eds), Protozoa and their role in marine process. Springer, Berlin: 161–179.

    Google Scholar 

  • Stoecker, D. K., N. Swamberg & S. Tyler, 1989. Oceanic mixotrophic flatworms. Mar. Ecol. Progr. Ser. 58: 41–51.

    Google Scholar 

  • Swamberg, N. R., 1983. The trophic role of colonial Radiolaria in oligotrophic oceanic environments. Limnol. Oceanogr. 28: 55–666.

    Google Scholar 

  • Taylor, D. L., 1971. On the symbiosis between Amphidinium klebsii (dinophyceae) and Amphiscolops langheransi (Turbellaria: Acoela). J. mar. biol. Ass. U.K. 51: 301–313.

    Google Scholar 

  • Taylor, F. J. R., 1982. Symbiosis in marine microplankton. Ann. Inst. Oceanogr. Paris 58: 61–90.

    Google Scholar 

  • Thiéry, J. P., 1967. Mise en évidence des polysaccharides sur coupes fines en microcopie électronique. J. Microscopie 6: 987–1018.

    Google Scholar 

  • Trench, R. K., 1986. Dinoflagellares in non-parasitic symbioses. In F. J. R. Taylor (ed.), The biology of Dinoflagellates. Blackwell Sc. Publ. Oxford: 530–561.

    Google Scholar 

  • Trench, R. K. & H. Winsor, 1987. Symbiosis with dinoflagellates in two pelagic flatworms, Amphiscolops sp. and Haplodiscus sp..Symbiosis 3: 1–22.

    Google Scholar 

  • Tyler, S., 1979. Distinctive features of cilia in metazoans and their significance for systematics. Tissue & Cell 11: 385–400.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, R.M., Silveira, M. Symbiosis between a pelagic flatworm and a dinoflagellate from a tropical area: structural observations. Hydrobiologia 287, 277–284 (1994). https://doi.org/10.1007/BF00006376

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006376

Key words

Navigation