Skip to main content

Communities on Deep-Sea Hard Bottoms

  • Chapter
  • First Online:
Marine Hard Bottom Communities

Part of the book series: Ecological Studies ((ECOLSTUD,volume 206))

Abstract

Although most of the deep-sea floor is blanketed with a thick layer of soft sediment, surprising amounts of hard bottom are available for community development, and specialized organisms and communities exploit these hard surfaces. The habitats include rock outcroppings on continental slopes, seamounts and island slopes; ferromanganese nodules and crusts; volcanic basalts and glasses associated with volcanoes and spreading centers; glacial dropstones, methane hydrates, authigenic carbonates, and asphalts; deep coral reefs; bones of dead whales and other large vertebrates from the upper ocean, and the hard parts of living or dead invertebrate organisms on the muddy seafloor. Studies of community development on hard bottom have focused on hydrothermal vents and on seamount faunas strongly influenced by water currents. The deep-sea fauna includes very long-lived and slow-growing organisms such as gorgonians, but also short-lived animals adapted for the exploitation of vents, wood falls, and other ephemeral habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beaulieu SE (2001a) Life on glass houses: sponge stalk communities in the deep sea. Mar Biol 138(4):803–817

    Article  Google Scholar 

  • Beaulieu SE (2001b) Colonization of habitat islands in the deep sea: recruitment to glass sponge stalks. Deep-Sea Res I 48(4):1121–1137

    Article  Google Scholar 

  • Black MB, Lutz RA, Vrijenhoek RC (1994) Gene flow among vestimentiferan tube worm (Riftia pachyptila) populations from hydrothermal vents in the eastern Pacific. Mar Biol 120:33–39

    Google Scholar 

  • Boehlert GW (1988) Current-topography interactions at mid-ocean seamounts and the impact on pelagic ecosystems. Geojournal 16(1):45–52

    Article  Google Scholar 

  • Boehlert GW, Genin A (1987) A review of the effects of seamounts on biological processes. In: Keating BH., Fryer P., Batiza R, Boehlert GW (eds) Seamounts islands and atolls. Geophys Monogr 43:319–334

    Google Scholar 

  • Braby CE, Rouse GW, Johnson SB, Jones WJ, Vrijenhoek RC (2007) Bathymetric and temporal variation among Osedax boneworms and associated megafauna on whale-falls in Monterey Bay, California. Deep-Sea Res I 54:1773–1791

    Article  Google Scholar 

  • Brooke S, Young CM (2003) Embryogenesis and larval biology of the ahermatypic scleractinian Oculina varicosa. Mar Biol 146:665–675

    Article  Google Scholar 

  • Calder DR (2000) Assemblages of hydroids (Cnidaria) from three seamounts near Bermuda in the Western North Atlantic. Deep-Sea Res 1 Oceanogr Res Pap 47:1125–1139

    Article  Google Scholar 

  • Chave EH, Jones AT (1991) Deep-water megafauna of the Kohala and Haleakala slopes, Alenuihaha Channel, Hawaii. Deep-Sea Res 38:781–803

    Article  Google Scholar 

  • Chave EH, Malahoff A (1998) In deeper waters: photographic studies of Hawaiian deep-sea habitats and life forms. University of Hawaii Press

    Google Scholar 

  • Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanogr Mar Biol Annu Rev 30:61–104

    Google Scholar 

  • Creasey S, Rogers AD, Tyler PA (1996) Genetic comparison of two populations of the deep-sea vent shrimp Rimicaris exoculata (Decapoda: Bresiliidae) from the Mid-Atlantic Ridge. Mar Biol 125:473–482

    Google Scholar 

  • Darwin C (1842) The structure and distribution of coral reefs. J. Murray, London

    Google Scholar 

  • Dayton PK, Newman WA, Oliver J (1982) The vertical zonation of the deep-sea Antarctic acorn barnacle, Bathylasma corolliforme (Hoek): experimental transplants from the shelf into shallow water. J Biogeogr 9:95–109

    Article  Google Scholar 

  • De Forges BR, Koslow JA, Poore GCB (2000) Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405:944–946

    Article  CAS  PubMed  Google Scholar 

  • Desbruyeres D (1998) Temporal variations in the vent communities on the East Pacific Rise and Galapagos Spreading Centre: a review of present knowledge. Cah Biol Mar 39:241–244

    Google Scholar 

  • Desbruyeres D, Toulmond A (1998) A new species of hesionid worm, Hesiocaeca methanicola sp. nov (Polychaeta: Hesionidae) living in ice-like methane hydrates in the deep Gulf of Mexico. Cah Biol Mar 39:93–98

    Google Scholar 

  • Desbruyeres D, Segonzak M, Bright M (2006) Handbook of deep-sea hydrothermal vent fauna. Denisia 18:1–544

    Google Scholar 

  • Eckelbarger KJ, Young CM, Brooke S, Ramirez Llodra E, Tyler PA (2001) Reproduction, gametogenesis and early development in the methane “ice worm” Hesoicoeca methanicola from the Louisiana Slope. Mar Biol 138:761–775

    Article  Google Scholar 

  • Emson RH, Young CM (1994) The feeding mechanism of a brisingid sea star, Novodinea antillensis. Mar Biol 118:433–442

    Article  Google Scholar 

  • Epifanio CE, Perovich G, Dittel AG, Cary SC (1999) Development and behavior of megalopa larvae and juveniles of the hydrothermal vent crab Bythograea thermydron. Mar Ecol Prog Ser 185:147–154

    Article  Google Scholar 

  • Fiala-Medioni A, Felbeck H (1990) Autotrophic processes in invertebrate nutrition: bacterial symbioses in bivalve mollusks. Comp Physiol 5:49–69

    Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Crit Rev Aquat Sci 2:399–436

    CAS  Google Scholar 

  • Fisher CR (1996) Ecophysiology of primary production at deep-sea vents and seeps. Biosyst Ecol Ser 11:313–336

    Google Scholar 

  • Fisher CR, MacDonald IR, Sassen R, Young CM, Macko SA, Hourdez S, Carney RS, Joye S, McMullin E (2000) Methane ice worms: Hesiocaeca methanicola colonizing fossil fuel reserves. Naturwissenschaften 87:184–187

    Article  CAS  PubMed  Google Scholar 

  • Forges BR, Koslow JA, Poore GCB (2000) Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405:944–947

    Article  PubMed  CAS  Google Scholar 

  • France SC, Hessler RR, Vrijenhoek RC (1992) Genetic differentiation between spatially-disjunct populations of the deep-sea hydrothermal vent-endemic Ventiella sulfuris. Mar Biol 114:552–556

    Article  Google Scholar 

  • Freiwald A, Roberts JM (eds) (2005) Cold-water corals and ecosystems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fustec A, Desbruyeres D, Juniper SK (1987) Deep-sea hydrothermal vent communities at 13°N on the East Pacific Rise: microdistribution and temporal variations. Biol Oceanogr 4:121–164

    Google Scholar 

  • Gage JD, Tyler PA (1991) Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gardner WD, Sullivan LG, Thorndike EM (1984) Long-term photographic, current and nephelometer observations of manganese nodule environments in the Pacific. Earth Planet Sci Lett 70:95–109

    Article  Google Scholar 

  • Genin A, Dayton PK, Lonsdale PF, Speiss FN (1986) Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322:59–61

    Article  Google Scholar 

  • Genin A, Paull CK, Dillon WP (1992) Anomalous abundances of deep-sea fauna on a rocky bottom exposed to strong currents. Deep-Sea Res 39:293–302

    Article  Google Scholar 

  • Governor B, Fisher CR (2006) Experimental evidence of habitat provision by aggregations of Riftia pachyptila at hydrothermal vents on the East Pacific Rise. Mar Ecol 28:3–14

    Google Scholar 

  • Governor B, Le Bris N, Gollner S, Glanville J, Aperghis A, Hourdez S, Fisher CR (2005) Epifaunal community structure associated with Riftia pachyptila aggregations in chemically different hydrothermal vent habitats. Mar Ecol Prog Ser 305:67–77

    Article  Google Scholar 

  • Gregg TKP, Fink JH (1995) Quantification of lava flow morphologies through analog experiments. Geology 23:73–76

    Article  Google Scholar 

  • Grigg RW, Malahoff A, Chave EH, Landahl J (1987) Seamount benthic ecology and potential environmental impact from manganese crust mining. In: Keating BH, Fryer P, Batiza R, Boehlert GW (eds) Seamounts, islands and atolls. Geophys Monogr 43:379–390

    Google Scholar 

  • Hannington MD, Honasson IR, Herzig PM, Petersen S (1995) Physical and chemical processes of seafloor mineralization at mid-ocean ridges. In: Humphries SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical and geochemical interactions. Geophys Monogr 91:115–157

    Google Scholar 

  • Haymon RM (1983) Growth history of black smoker hydrothermal chimneys. Nature 301:695–698

    Article  CAS  Google Scholar 

  • Haymon RM, Fornari DJ, Von Damm KL, Lilley MD, Perfit MR, Edmond JM, Shanks WC III, Lutz RA, Grebmeier JM, Carbotte S, Wright D, McLaughlin E, Smith M, Beedle N, Olson E (1993) Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9° 45-52’N: direct submersible observations of sea-floor phenomena associated with an eruption event in April, 1991. Earth Planet Sci Lett 119:85–101

    Article  Google Scholar 

  • Hessler RR, Smithey WM Jr, Keller CH (1985) Spatial and temporal variation of giant clams, tubeworms and mussels at deep-sea hydrothermal vents. Biol Soc Wash Bull 6:411–428

    Google Scholar 

  • Hessler RR, Smithey WM, Keller CH (1988) Temporal change in megafauna at the Rose Garden hydrothermal vent (Galapagos Rift: eastern tropical Pacific). Deep-Sea Res 35:1681–1709

    Article  Google Scholar 

  • Hunt HL, Metaxas A, Jennings RM, Halanych KM, Mullineaux LS (2004) Testing biological control of colonization by vestimentiferan tubeworms at deep-sea hydrothermal vents (East Pacific Rise, 9 degrees 50’N). Deep-Sea Res I 51:225–235

    Article  Google Scholar 

  • Järnegren J, Tobias CR, Macko SA, Young CM (2005) Egg predation fuels unique species association at deep sea hydrocarbon seeps. Biol Bull 209:87–93

    Article  PubMed  Google Scholar 

  • Jinks RN, Markley TL, Taylor EE, Perovich G, Dittel AI, Epifanio CE, Cronin TW (2002) Adaptive visual metamorphosis in a deep-sea hydrothermal vent crab. Nature 420:68–70

    Article  CAS  PubMed  Google Scholar 

  • Johnson KS, Childress JJ, Hessler RR, Sakamoto-Arnold CM, Beehler CL (1988) Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center. Deep-Sea Res 35:1723–1744

    Article  Google Scholar 

  • Jorgensen CB (1955) Quantitative aspects of filter feeding in invertebrates. Biol Rev Camb Philos Soc 30:391–454

    Article  Google Scholar 

  • Jumars PA, Gallagher ED (1982) Deep-sea community structure: three plays on the benthic proscenium. In: Ernst WG, Morin JG (eds) The environment of the deep sea. Prentice Hall, Englewood Cliffs, NJ, pp 217–285

    Google Scholar 

  • Keating BH, Fryer P, Batiza R, Boehlert GW (1987) Seamounts, islands and atolls. Geophys Monogr 43

    Google Scholar 

  • Kim SL, Mullineaux LS (1998) Distribution and near-bottom transport of larvae and other plankton at hydrothermal vents. Deep-Sea Res II 45:423–440

    Article  Google Scholar 

  • Kim SL, Mullineaux LS, Helfrich KR (1994) Larval dispersal via entrainment into hydrothermal vent plumes. J Geophys Res 99:12,655–12,665

    Google Scholar 

  • Kitchingman A, Lai S, Morato T, Pauly D (2007) How many seamounts are there and where are they located? In: Pitcher TJ, Morato T, Hart PJB, Clark MR, Haggan N, Santos RS (eds) Seamounts: ecology, conservation and management. Blackwell, Oxford, Fish and Aquatic Resources Series, chap 2, pp 26–40

    Chapter  Google Scholar 

  • Koslow T (2007) The silent deep. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Lutz RA, Shank TM, Evans R (2001) Life after death in the deep sea. Am Sci 89:422–431

    Google Scholar 

  • Lutz RA, Shank TR, Fornari DJ, Haymon RD, Lilley MD, Von Damm K, Desbruyeres D (2002) Rapid growth at deep-sea vents. Nature 371:663–664

    Article  Google Scholar 

  • Macurda DB Jr, Meyer DL (1974) Feeding posture of modern stalked crinoids. Nature 247(5440):394–396

    Article  Google Scholar 

  • Maldonado M, Young CM (1996) Bathymetric patterns of sponge distribution on the Bahamian Slope. Deep-Sea Res I 43:897–915

    Article  Google Scholar 

  • Maldonado M, Carmona C, Uriz MJ, Cruzado A (1999) Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401:785–788

    Article  CAS  Google Scholar 

  • Marsh A, Mullineaux L, Young CM, Manahan DL (2001) Larval dispersal potential of the tubeworm Riftia pachyptila along a deep-ocean ridge axis. Nature 411:77–80

    Article  CAS  PubMed  Google Scholar 

  • McClintock JB, Baker BJ, Baumiller TK, Messing CG (1999) Lack of chemical defense in two species of stalked crinoids: support for the predation hypothesis for Mesozoic bathymetric displacement. J Exp Mar Biol Ecol 232:1–7

    Article  Google Scholar 

  • McDonald IR, Bohrmann G, Escobar E, Abegg F, Blanchon P, Blinova V, Bruckmann W, Drews M, Eisenhauer A, Han X, Heeschen K, Meier F, Mortera C, Naehr T, Orcutt B, Bernard B, Brooks J, de Farago M (2004) Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico. Science 304:999–1002

    Article  CAS  Google Scholar 

  • McLean JH, Harasewych MG (1995) Review of Western Atlantic species of cocculinid and pseudococculinid limpets, with descriptions of new species (Gastropoda: Cocculiniformia). Natural History Museum Los Angeles County Contrib Sci 453:1–33

    Google Scholar 

  • Messing CG, Neumann AC, Lang JC (1990) Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern Straits of Florida. Palaios 5(1):15–33

    Article  Google Scholar 

  • Messing CG, Reed JK, Brooke SD, Ross SW (2008) Deep-water coral reefs of the United States. In: Riegl B, Dodge RE (eds) Coral reefs of the USA. Springer, Berlin Heidelberg New York, pp 763–787

    Google Scholar 

  • Micheli F, Peterson CH, Mullineaux LS, Fisher CR, Mills SA, Sancho G, Johnson GA, Lenihan HS (2002) Predation structures communities at deep-sea hydrothermal vents. Ecol Monogr 72:365–382

    Article  Google Scholar 

  • Monniot C (1979) Adaptations of benthic filtering animals to the scarcity of suspended particles in deep water. Ambio Spec Rep 6:73–74

    Google Scholar 

  • Monniot C, Monniot F (1978) Recent work on the deep-sea tunicates. Oceanogr Mar Biol Annu Rev 16:181–228

    Google Scholar 

  • Moore JG, Clague DA (2004) Hawaiian submarine manganese-iron oxide crusts—a dating tool? Geol Soc Am Bull 115:337–347

    Article  CAS  Google Scholar 

  • Motokawa T (1984) Catch connective tissue in echinoderms. Biol Rev 59:255–270

    Article  Google Scholar 

  • Mullineaux LS (1987) Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. Deep-Sea Res 34:165–184

    Article  Google Scholar 

  • Mullineaux LS (1988) The role of initial settlement in structuring a hard-substratum community in the deep sea. J Exp Mar Biol Ecol 120:247–261

    Article  Google Scholar 

  • Mullineaux LS (1989) Vertical distributions of the epifauna on manganese nodules: implications for feeding and settlement in flow. Limnol Oceanogr 34(7):1247–1262

    Article  Google Scholar 

  • Mullineaux LS (1994) Implications of mesoscale flows for dispersal of deep-sea larvae. In: Young CM, Eckelbarger KJ (eds) Reproduction, larval biology and recruitment of the deep-sea benthos. Columbia University Press, Irvington, NY, pp 201–223

    Google Scholar 

  • Mullineaux LS, Butman CA (1990) Recruitment of encrusting benthic invertebrates in boundary-layer flows: a deep water experiment on Cross Seamount. Limnol Oceanogr 35:409–423

    Article  Google Scholar 

  • Mullineaux LS, Mills SW (1997) A test of the larval retention hypothesis in seamount-generated flows. Deep-Sea Res 44:745–770

    Article  Google Scholar 

  • Mullineaux LS, Mills SW, Goldman E (1998) Recruitment variation during a pilot colonization study of hydrothermal vents (9°50’N East Pacific Rise). Deep-Sea Res II 45:441–464

    Article  Google Scholar 

  • Mullineaux LS, Fisher CR, Peterson CH, Schaeffer SW (2000) Vestimentiferan tubeworm succession at hydrothermal vents: use of biogenic cues to reduce habitat selection error? Oecologia 123:275–284

    Article  Google Scholar 

  • Mullineaux LS, Peterson CH, Micheli F, Mills SW (2003) Successional mechanism varies along a gradient in hydrothermal fluid flux at deep-sea vents. Ecol Monogr 73:523–542

    Article  Google Scholar 

  • Neumann AC, Kofoed JW, Keller GH (1977) Lithoherms in the Straits of Florida. Geology 5:4–10

    Article  Google Scholar 

  • Oschmann W (1990) Dropstones—rocky mini-islands in high-latitude pelagic soft substrate environments. Senckenb marit 21:55–75

    Google Scholar 

  • Parker T, Tunnicliffe V (1994) Dispersal strategies of the biota on an oceanic seamount: implications for ecology and biogeography. Biol Bull 187:336–345

    Article  Google Scholar 

  • Paull CK, Neumann AC, am Ende BA, Ussler W, Rodriguez NM (2000) Lithoherms on the Florida Hatteras Slope. Mar Geol 136:83–101

    Article  Google Scholar 

  • Pile AJ, Young CM (2006a) Consumption of bacteria by larvae of a deep-sea polychaete. Mar Ecol 27:15–19

    Article  Google Scholar 

  • Pile AJ, Young CM (2006b) The natural diet of a hexactinellid sponge: benthic-pelagic coupling in a deep-sea microbial food web. Deep-Sea Res I 53:1148–1156

    Article  Google Scholar 

  • Pitcher TJ, Morato T, Hart PJB, Clark MR, Haggan N, Santos RS (2007) Seamounts: ecology, fisheries and conservation. Blackwell, Oxford

    Book  Google Scholar 

  • Pradillon F, Shillito B, Young CM, Gaill F (2001) Deep-sea ecology: developmental arrest in vent worm embryos. Nature 413:698–699

    Article  CAS  PubMed  Google Scholar 

  • Pradillon F, Le Bris N, Shillito B, Young CM, Gaill F (2005) Influence of environmental conditions on early development of the hydrothermal vent polychaete Alvinella pompeijana. J Exp Biol 208:1551–1561

    Article  PubMed  Google Scholar 

  • Reed J (2002) Comparison of deep-water coral reefs and lithoherms off southeastern USA Hydrobiologia 471:57–69

    Article  Google Scholar 

  • Rittschoff D, Forward RB, Cannon G, Welch JM, McClary M, Holm ER, Clare AS, Conova S, McKelvey LM, Bryan P, Van Dover CL (1998) Cues and context: larval responses to physical and chemical cues. Biofouling 12:31–44

    Article  Google Scholar 

  • Rogers AD (1994) The biology of seamounts. Adv Mar Biol 30:305–351

    Article  Google Scholar 

  • Rogers AD (1999) The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. Int Rev Hydrobiol 84:315–406

    Google Scholar 

  • Rouse GW, Wilson NG, Goffredi SK, Johnson SB, Smart T, Widmer C, Young CM, Vrijenhoek RC (2009) Spawning and development in Osedax boneworms (Siboglinidae, Annelida). Mar Biol 156:395–405

    Article  Google Scholar 

  • Rouse GW, Goffredi SK, Vrijenhoek RC (2004) Osedax: bone-eating marine worms with dwarf males. Science 305:668–671

    Article  CAS  PubMed  Google Scholar 

  • Ryland JS, de Putron S, Scheltema RS, Cimonides PJ, Zhadan DG (2000) Semper’s (zoanthid) larvae: pelagic life, parentage and other problems. Hydrobiologia 440:191–198

    Article  Google Scholar 

  • Sancho G, Fisher CR, Mills S, Micheli F, Johnson GA, Lenihan HS, Peterson CH, Mullineaux LS (2005) Selective predation by the zoarcid fish Thermarces cerberus at hydrothermal vents. Deep-Sea Res 152:837–844

    Google Scholar 

  • Sarrazin J, Robigou V, Juniper SK, Delaney J (1997) Biological and geological dynamics over four years on a high-temperature sulphide structure at the Juan de Fuca Ridge hydrothermal observatory. Mar Ecol Prog Ser 153:5–24

    Article  Google Scholar 

  • Shank TM, Formari DJ, von Damm KL, Lilley MD, Haymon RM, Lutz RA (1998) Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50’N, East Pacific Rise). Deep-Sea Res 45:465–515

    Article  Google Scholar 

  • Smith DK (1991) Seamount abundances and size distributions, and their geographic variations. Adv Mar Biol 5:197–210

    Google Scholar 

  • Smith CR, Baco A (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Annu Rev 41:311–354

    Google Scholar 

  • Smith CR, Demopoulos AWJ (2003) The deep Pacific ocean floor. In: Tyler PA (ed) Ecosystems of the world: ecosystems of the deep ocean. Elsevier, Amsterdam, pp 179–218

    Google Scholar 

  • Staudigel H, Hart S, Pile A, Bailey B, Baker E, Brooke S, Haucke L, Hudson I, Jones D, Koppers A, Konter J, Lee R, Pietsch T, Tebo B, Templeton A, Zierenberg R, Young CM (2006) Vailulu’u Seamount, Samoa: life and death on an active submarine volcano. Proc Natl Acad Sci 103:6448–6453

    Article  CAS  PubMed  Google Scholar 

  • Tebo BM, Barger JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328

    Article  CAS  Google Scholar 

  • Tebo BM, Templeton AS, Johnson HA, McCarthy J (2005) Geomicrobiology of Mn(II)-biomineralization. Trends Microbiol 13:421–428

    Article  CAS  PubMed  Google Scholar 

  • Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol J 22:129–137

    Article  CAS  Google Scholar 

  • Tunnicliffe V (1988) Biogeography and evolution of hydrothermal vent fauna in the eastern Pacific Ocean. Proc R Soc Lond B 233:347–366

    Article  Google Scholar 

  • Tunnicliffe V (1991) The biology of hydrothermal vents: ecology and evolution. Oceanogr Mar Biol Annu Rev 29:319–417

    Google Scholar 

  • Tunnicliffe V, Embley RW, Holden JF, Butterfield DA, Massoth GJ, Juniper SK (1997) Biological colonization of new hydrothermal vents following an eruption on Juan de Fuca Ridge. Deep-Sea Res 44:1627–1644

    Article  Google Scholar 

  • Tunnicliffe V, Juniper SK, Sibuet M (2003) Reducing environments of the deep-sea floor. In: Tyler PA (ed) Ecosystems of the world: ecosystems of the deep-sea floor. Elsevier, Amsterdam, pp 81–110

    Google Scholar 

  • Turner RD (1973) Wood-boring bivalves, opportunistic species in the deep sea. Science 180:1377–1379

    Article  CAS  PubMed  Google Scholar 

  • Turner RD (1978) Wood mollusks and deep-sea food chains. Am Malacol Bull (1977):13–19

    Google Scholar 

  • Tyler PA (1995) Conditions for the existence of life at the deep-sea floor: an update. Oceanogr Mar Biol Annu Rev 33:221–244

    Google Scholar 

  • Tyler PA, Young CM (1999) Reproduction and dispersal at vents and cold seeps. J Mar Biol Assoc UK 79:193–208

    Article  Google Scholar 

  • Tyler PA, Zibrowius H (1992) Submersible observations of the invertebrate fauna on the continental slope southwest of Ireland (NE Atlantic Ocean). Oceanol Acta 15:211–226

    Google Scholar 

  • Tyler PA, Young CM, Dove F (2007) Settlement, growth and reproduction in the deep-sea wood-boring bivalve mollusc Xylophaga depalmai. Mar Biol 343:151–159

    Google Scholar 

  • Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Van Dover CL (2003) Variation in community structure within hydrothermal vent mussel beds of the East Pacific Rise. Mar Ecol Prog Ser 253:55–56

    Article  Google Scholar 

  • Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 395:1253–1257

    Article  Google Scholar 

  • Verlaan PA (1992) Benthic recruitment and manganese crust formation on seamounts. Mar Biol 113:171–174

    Article  Google Scholar 

  • Voigt JR (2007) Experimental deep-sea deployments reveal diverse Northeast Pacific wood-boring bivalves of Xylophagainae (Myoida: Pholadidae). J Mollus Stud 73:377–391

    Article  Google Scholar 

  • Vrijenhoek RC (1997) Gene flow and genetic diversity in naturally fragmented metapopulations of deep-sea hydrothermal vent animals. J Heredity 88:285–293

    Article  CAS  Google Scholar 

  • Vrijenhoek RC, Shank T, Lutz RA (1998) Gene flow and dispersal in deep-sea hydrothermal vent animals. Cah Biol Mar 39:363–366

    Google Scholar 

  • Wilkie IC, Emson RH (1988) Mutable collagenous tissues and their significance for echinoderm palaeontology and phylogeny. In: Paul CRC, Smith AB (eds) Echinoderm phylogeny and evolutionary biology. Clarendon Press, Oxford, pp 311–330

    Google Scholar 

  • Wilkie IC, Emson RH, Young CM (1993) Smart collagen in sea lilies. Nature 366:519–520

    Article  Google Scholar 

  • Wilkie IC, Emson RH, Young CM (1994) Variable tensility of the ligaments in the stalk of a sea-lily. Comp Biochem Physiol 109A:633–641

    Article  CAS  Google Scholar 

  • Wishner K, Levin LA, Gowing M, Mullineaux L (1990) Involvement of the oxygen minimum in benthic zonation on a deep seamount. Nature 346:57–59

    Article  Google Scholar 

  • Young CM (2003) Reproduction, development and life-history traits. In: Tyler PA (ed) Ecosystems of the world: ecosystems of the deep oceans. Elsevier, Amsterdam, pp 381–426

    Google Scholar 

  • Young CM, Braithwaite LF (1980) Orientation and current-induced flow in the stalked ascidian Styela montereyensis. Biol Bull 159:428–440

    Article  Google Scholar 

Download references

Acknowledgements

Our work on hard bottoms in the deep sea has been supported by grants from the U.S. National Science Foundation (most recently, OCE-0527139), the National Undersea Research Program (NOAA/NURP Hawaii and Wilmington), the NOAA Office of Ocean Exploration, and the Mineral Management Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig M. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Young, C.M. (2009). Communities on Deep-Sea Hard Bottoms. In: Wahl, M. (eds) Marine Hard Bottom Communities. Ecological Studies, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b76710_3

Download citation

Publish with us

Policies and ethics