Skip to main content
Log in

A Survey of the Sources of Noise in fMRI

Psychometrika Aims and scope Submit manuscript

An Editorial Notes to this article was published on 05 June 2013

Abstract

Functional magnetic resonance imaging (fMRI) is a noninvasive method for measuring brain function by correlating temporal changes in local cerebral blood oxygenation with behavioral measures. fMRI is used to study individuals at single time points, across multiple time points (with or without intervention), as well as to examine the variation of brain function across normal and ill populations. fMRI may be collected at multiple sites and then pooled into a single analysis. This paper describes how fMRI data is analyzed at each of these levels and describes the noise sources introduced at each level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

Notes

  1. Increasingly fMRI experiments are being performed without a task. These techniques are not extensively described in this paper as their methodology strongly overlaps with task-based analysis.

  2. Prior to RF transmission, a third set of coils creates a controlled spatial gradient in the B 0 field so that only the spins in a given slice are on-resonance. The location of this slice is adjusted each shot so that all slices in the brain are imaged. Other types of MRI acquisitions will excite the spins across the entire brain.

References

  • Aguirre, G.K., Zarahn, E., & D’Esposito, M. (1998). The variability of human, BOLD hemodynamic responses. NeuroImage, 8(4), 360–369.

    Article  PubMed  Google Scholar 

  • Alsop, D.C., & Detre, J.A. (1996). Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. Journal of Cerebral Blood Flow and Metabolism, 16(6), 1236–1249.

    PubMed  Google Scholar 

  • Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.

    Article  PubMed  Google Scholar 

  • Beckmann, C., Jenkinson, M., & Smith, S. (2003). General multi-level linear modelling for group analysis in FMRI. NeuroImage, 20, 1052–1063.

    Article  PubMed  Google Scholar 

  • Beckmann, C.F., & Smith, S.M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging, 23(2), 137–152.

    Article  PubMed  Google Scholar 

  • Birn, R.M., Diamond, J.B., Smith, M.A., & Bandettini, P.A. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage, 31(4), 1536–1548.

    Article  PubMed  Google Scholar 

  • Biswal, B., Yetkin, F., Haughton, V., & Hyde, J. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar imaging. Magnetic Resonance in Medicine, 34, 537–541.

    Article  PubMed  Google Scholar 

  • Brosch, J.R., Talavage, T.M., Ulmer, J.L., & Nyenhuis, J.A. (2002). Simulation of human respiration in fMRI with a mechanical model. IEEE Transactions on Biomedical Engineering, 49(7), 700–707.

    Article  PubMed  Google Scholar 

  • Brown, G.G., Mathalon, D.H., Stern, H., Ford, J., Mueller, B., Greve, D.N., McCarthy, G., Voyvodic, J., Glover, G., Diaz, M., Yetter, E., Ozyurt, I.B., Jorgensen, K.W., Wible, C.G., Turner, J.A., Thompson, W.K., & Potkin, S.G. (2011). Multisite reliability of cognitive BOLD data. NeuroImage, 54(3), 2163–2175.

    Article  PubMed  Google Scholar 

  • Brown, G.G., Perthen, J.E., Liu, T.T., & Buxton, R.B. (2007). A primer on functional magnetic resonance imaging. Neuropsychology Review, 17(2), 107–125.

    Article  PubMed  Google Scholar 

  • Bullmore, E., Long, C., Suckling, J., Fadili, J., Calvert, G., Zelaya, F., Carpenter, T.A., & Brammer, M. (2001). Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Human Brain Mapping, 12(2), 61–78.

    Article  PubMed  Google Scholar 

  • Burock, M.A., & Dale, A.M. (2000). Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach. Human Brain Mapping, 11, 249–260.

    Article  PubMed  Google Scholar 

  • Buxton, R.B. (2009). Introduction to functional magnetic resonance imaging: principles and techniques (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • Buxton, R.B., Uludag, K., Dubowitz, D.J., & Liu, T.T. (2004). Modeling the hemodynamic response to brain activation. NeuroImage, 23(Suppl 1), S220–S233.

    Article  PubMed  Google Scholar 

  • Calhoun, V.D., Adali, T., Pearlson, G.D., & Pekar, J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151.

    Article  PubMed  Google Scholar 

  • Calhoun, V.D., Stevens, M.C., Pearlson, G.D., & Kiehl, K.A. (2004). fMRI analysis with the general linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms. NeuroImage, 22(1), 252–257.

    Article  PubMed  Google Scholar 

  • Chang, C., Cunningham, J.P., & Glover, G.H. (2009). Influence of heart rate on the BOLD signal: the cardiac response function. NeuroImage, 44(3), 857–869.

    Article  PubMed  Google Scholar 

  • Chang, C., & Glover, G.H. (2009). Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. NeuroImage, 47(4), 1448–1459.

    Article  PubMed  Google Scholar 

  • Cohen, M.S. (1997). Parametric analysis of fMRI data using linear systems methods. NeuroImage, 6(2), 93–103.

    Article  PubMed  Google Scholar 

  • Collins, D.L., Neelin, P., Peters, T.M., & Evans, A.C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.

    Article  PubMed  Google Scholar 

  • Cox, R., & Jesmanowicz, A. (1999). Real-time 3D image registration for functional MRI. Magnetic Resonance Imaging, 42, 1014–1018.

    Google Scholar 

  • D’Esposito, M., Zarahn, E., Aguirre, G.K., & Rypma, B. (1999). The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. NeuroImage, 10(1), 6–14.

    Article  PubMed  Google Scholar 

  • Dale, A.M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109–114.

    Article  PubMed  Google Scholar 

  • Fischl, B., Dale, A.M., Sereno, M.I., Tootell, R.B.H., & Rosen, B.R. (1998). A coordinate system for the cortical surface. NeuroImage, 7(4), S740.

    Google Scholar 

  • Fleisher, A.S., Podraza, K.M., Bangen, K.J., Taylor, C., Sherzai, A., Sidhar, K., Liu, T.T., Dale, A.M., & Buxton, R.B. (2009). Cerebral perfusion and oxygenation differences in Alzheimer’s disease risk. Neurobiology of Aging, 30(11), 1737–1748.

    Article  PubMed  Google Scholar 

  • Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., & Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.

    Article  PubMed  Google Scholar 

  • Friedman, L., & Glover, G.H. (2006). Report on a multicenter fMRI quality assurance protocol. Journal of Magnetic Resonance Imaging, 23(6), 827–839.

    Article  PubMed  Google Scholar 

  • Friedman, L., Stern, H., Brown, G.G., Mathalon, D.H., Turner, J., Glover, G.H., Gollub, R.L., Lauriello, J., Lim, K.O., Cannon, T., Greve, D.N., Bockholt, H.J., Belger, A., Mueller, B., Doty, M.J., He, J., Wells, W., Smyth, P., Pieper, S., Kim, S., Kubicki, M., Vangel, M., & Potkin, S.G. (2008). Test-retest and between-site reliability in a multicenter fMRI study. Human Brain Mapping, 29(8), 958–972.

    Article  PubMed  Google Scholar 

  • Friston, K.J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M.D., & Turner, R. (1998). Event-related fMRI: characterizing differential responses. NeuroImage, 7(1), 30–40.

    Article  PubMed  Google Scholar 

  • Friston, K.J., Frith, C.D., Turner, R., & Frackowiak, R.S. (1995). Characterizing evoked hemodynamics with fMRI. NeuroImage, 2(2), 157–165.

    Article  PubMed  Google Scholar 

  • Friston, K.J., Holmes, A.P., & Worsley, K.J. (1999). How many subjects constitute a study? NeuroImage, 10(1), 1–5.

    Article  PubMed  Google Scholar 

  • Friston, K.J., Jezzard, P., & Turner, R. (1994). Analysis of functional MRI time-series. Human Brain Mapping, 1, 153–171.

    Article  Google Scholar 

  • Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35(3), 346–355.

    Article  PubMed  Google Scholar 

  • Genovese, C.R., Lazar, N.A., & Nichols, T.E. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15, 870–878.

    Article  PubMed  Google Scholar 

  • Glover, G.H. (1999). Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage, 9(4), 416–429.

    Article  PubMed  Google Scholar 

  • Glover, G.H., Li, T.Q., & Ress, D. (2000). Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine, 44(1), 162–167.

    Article  PubMed  Google Scholar 

  • Glover, G.H., Mueller, B.A., Turner, J.A., van Erp, T.G., Liu, T.T., Greve, D.N., Voyvodic, J.T., Rasmussen, J., Brown, G.G., Keator, D.B., Calhoun, V.D., Lee, H.J., Ford, J.M., Mathalon, D.H., Diaz, M., O’Leary, D.S., Gadde, S., Preda, A., Lim, K.O., Wible, C.G., Stern, H.S., Belger, A., McCarthy, G., Ozyurt, B., & Potkin, S.G. (2012). Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. Journal of Magnetic Resonance Imaging, 36(1), 39–54.

    Article  PubMed  Google Scholar 

  • Greve, D.N., Mueller, B.A., Liu, T., Turner, J.A., Voyvodic, J., Yetter, E., Diaz, M., McCarthy, G., Wallace, S., Roach, B.J., Ford, J.M., Mathalon, D.H., Calhoun, V.D., Wible, C.G., Brown, G.G., Potkin, S.G., & Glover, G. (2010). A novel method for quantifying scanner instability in fMRI. Magnetic Resonance in Medicine, 65(4), 1053–1061.

    Article  PubMed  Google Scholar 

  • Handwerker, D.A., Ollinger, J.M., & D’Esposito, M. (2004). Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage, 21(4), 1639–1651.

    Article  PubMed  Google Scholar 

  • Hanson, L. (2008). Is quantum mechanics necessary for understanding magnetic resonance? Concepts in Magnetic Resonance. Part A 32A(5), 329–340.

    Article  Google Scholar 

  • Hayasaka, S., & Nichols, T.E. (2003). Validating cluster size inference: random field and permutation methods. NeuroImage, 20(4), 2343–2356.

    Article  PubMed  Google Scholar 

  • Henson, R.N., Price, C.J., Rugg, M.D., Turner, R., & Friston, K.J. (2002). Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations. NeuroImage, 15(1), 83–97.

    Article  PubMed  Google Scholar 

  • Hopfinger, J.B., Buchel, C., Holmes, A.P., & Friston, K.J. (2000). A study of analysis parameters that influence the sensitivity of event-related fMRI analyses. NeuroImage, 11(4), 326–333.

    Article  PubMed  Google Scholar 

  • Huettel, S.A., Song, A.W., & McCarthy, G. (2009). Functional magnetic resonance imaging (2nd ed.). Sunderland: Sinauer Associates.

    Google Scholar 

  • Huettel, S.A., & McCarthy, G. (2000). Evidence for a refractory period in the hemodynamic response to visual stimuli as measured by MRI. NeuroImage, 11(5), 547–553.

    Article  PubMed  Google Scholar 

  • Jezzard, P., & Balaban, R.S. (1995). Correction for geometric distortion in echo planar images from Bo field variations. Magnetic Resonance in Medicine, 34, 65–73.

    Article  PubMed  Google Scholar 

  • Jezzard, P., Matthews, P., & Smith, S.M. (2001). Functional MRI: an introduction to methods. Oxford: Oxford University Press.

    Google Scholar 

  • Kelly, A.M., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15(8), 1089–1102.

    Article  PubMed  Google Scholar 

  • Kruger, G., & Glover, G.H. (2001). Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magnetic Resonance in Medicine, 46(4), 631–637.

    Article  PubMed  Google Scholar 

  • Kumari, V., Gray, J.A., ffytche, D.H., Mitterschiffthaler, M.T., Das, M., Zachariah, E., Vythelingum, G.N., Williams, S.C., Simmons, A., & Sharma, T. (2003). Cognitive effects of nicotine in humans: an fMRI study. NeuroImage, 19(3), 1002–1013.

    Article  PubMed  Google Scholar 

  • Levin, J.M., Ross, M.H., Mendelson, J.H., Kaufman, M.J., Lange, N., Maas, L.C., Mello, N.K., Cohen, B.M., & Renshaw, P.F. (1998). Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion. Psychiatry Research, 82(3), 135–146.

    Article  PubMed  Google Scholar 

  • Liang, Z., & Lauterbur, P.C. (2000). Principles of magnetic resonance imaging: a signal processing perspective. Piscataway: IEEE Press.

    Google Scholar 

  • Liu, T.T., Glover, G.H., Mueller, B.A., Greve, D.N., & Brown, G.G. (2012). An introduction to normalization and calibration methods in functional MRI. Psychometrika.

  • Liu, T.T., Behzadi, Y., Restom, K., Uludag, K., Lu, K., Buracas, G.T., Dubowitz, D.J., & Buxton, R.B. (2004). Caffeine alters the temporal dynamics of the visual BOLD response. NeuroImage, 23(4), 1402–1413.

    Article  PubMed  Google Scholar 

  • Liu, T.T., & Frank, L.R. (2004). Efficiency, power, and entropy in event-related FMRI with multiple trial types. Part I: theory. NeuroImage, 21(1), 387–400.

    Article  PubMed  Google Scholar 

  • Logothetis, N.K., & Wandell, B.A. (2004). Interpreting the BOLD signal. Annual Review of Physiology, 66, 735–769.

    Article  PubMed  Google Scholar 

  • Maus, B., Van Breukelen, G.J., Goebel, R., & Berger, M.P. (2010). Optimization of blocked designs in fMRI studies. Psychometrika, 56, 1338–1352.

    Google Scholar 

  • Maxim, V., Sendur, L., Fadili, J., Suckling, J., Gould, R., Howard, R., & Bullmore, E. (2005). Fractional Gaussian noise, functional MRI and Alzheimer’s disease. NeuroImage, 25(1), 141–158.

    Article  PubMed  Google Scholar 

  • McGonigle, D.J., Howseman, A.M., Athwal, B.S., Friston, K.J., Frackowiak, R.S., & Holmes, A.P. (2000). Variability in fMRI: an examination of intersession differences. NeuroImage, 11(6 Pt 1), 708–734.

    Article  Google Scholar 

  • Miezin, F.M., Maccotta, L., Ollinger, J.M., Petersen, S.E., & Buckner, R.L. (2000). Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage, 11(6 Pt 1), 735–759.

    Article  PubMed  Google Scholar 

  • Monti, M.M. (2011). Statistical analysis of fMRI time-series: a critical review of the GLM approach. Frontiers in Human Neuroscience, 5, 28.

    Article  PubMed  Google Scholar 

  • Nishimura, D.G. (1996). Principles of magnetic resonance imaging. Stanford: Standford University.

    Google Scholar 

  • Payne, S.J. (2006). A model of the interaction between autoregulation and neural activation in the brain. Mathematical Biosciences, 204(2), 260–281.

    Article  Google Scholar 

  • Postelnicu, G., Zollei, L., & Fischl, B. (2009). Combined volumetric and surface registration. IEEE Transactions on Medical Imaging, 28(4), 508–522.

    Article  PubMed  Google Scholar 

  • Seber, G.A.F., & Lee, A.J. (2003). Linear regression analysis (2nd ed.). Hoboken: Wiley.

    Book  Google Scholar 

  • Shen, S., Sterr, A., & Szameitat, A. (2005). A template effect study on voxel-based morphometry in statistic parametric mapping. Conference Proceedings (IEEE Engineering in Medicine and Biology Society. Conf.), 3, 3051–3054.

    Google Scholar 

  • Smith, S.M., Beckmann, C.F., Ramnani, N., Woolrich, M.W., Bannister, P.R., Jenkinson, M., Matthews, P.M., & McGonigle, D.J. (2005). Variability in fMRI: a re-examination of inter-session differences. Human Brain Mapping, 24(3), 248–257.

    Article  PubMed  Google Scholar 

  • Strother, S., La Conte, S., Hansen, L.K., Anderson, J., Zhang, J., Pulapura, S., & Rottenberg, D.A. (2004). Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis. NeuroImage, 23, S196–S207.

    Article  PubMed  Google Scholar 

  • Suckling, J., Ohlssen, D., Andrew, C., Johnson, G., Williams, S.C., Graves, M., Chen, C.H., Spiegelhalter, D., & Bullmore, E. (2008). Components of variance in a multicentre functional MRI study and implications for calculation of statistical power. Human Brain Mapping, 29(10), 1111–1122.

    Article  PubMed  Google Scholar 

  • Thesen, S., Heid, O., Mueller, E., & Schad, L.R. (2000). Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magnetic Resonance in Medicine, 44(3), 457–465.

    Article  PubMed  Google Scholar 

  • Thomas, R.J., & Kwong, K. (2006). Modafinil activates cortical and subcortical sites in the sleep-deprived state. Sleep, 29(11), 1471–1481.

    PubMed  Google Scholar 

  • Tisdall, M., Hess, A., & van der Kouwe, A. (2010). Prospective motion correction of anatomical brain sequences using EPI navigators. Paper presented at the ISMRM Workshop on Current Concepts of Motion Correction for MRI & MRS.

  • Triantafyllou, C., Hoge, R.D., Krueger, G., Wiggins, C.J., Potthast, A., Wiggins, G.C., & Wald, L.L. (2005). Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. NeuroImage, 26(1), 243–250.

    Article  PubMed  Google Scholar 

  • Turner, G.H., & Twieg, D.B. (2005). Study of temporal stationarity and spatial consistency of fMRI noise using independent component analysis. IEEE Transactions on Medical Imaging, 24(6), 712–718.

    Article  PubMed  Google Scholar 

  • van der Kouwe, A.J., Benner, T., Fischl, B., Schmitt, F., Salat, D.H., Harder, M., Sorensen, A.G., & Dale, A.M. (2005). On-line automatic slice positioning for brain MR imaging. NeuroImage, 27(1), 222–230.

    Article  PubMed  Google Scholar 

  • Vincent, J.L., Snyder, A.Z., Fox, M.D., Shannon, B.J., Andrews, J.R., Raichle, M.E., & Buckner, R.L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. Journal of Neurophysiology, 96(6), 3517–3531.

    Article  PubMed  Google Scholar 

  • Ward, H.A., Riederer, S.J., Grimm, R.C., Ehman, R.L., Felmlee, J.P., & Jack, C.R. Jr. (2000). Prospective multiaxial motion correction for fMRI. Magnetic Resonance in Medicine, 43(3), 459–469.

    Article  PubMed  Google Scholar 

  • Wise, R.G., Ide, K., Poulin, M.J., & Tracey, I. (2004). Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. NeuroImage, 21(4), 1652–1664.

    Article  PubMed  Google Scholar 

  • Woolrich, M., Ripley, B., Brady, J., & Smith, S. (2001). Temporal autocorrelation in univariate linear modelling of FMRI data. NeuroImage, 14(6), 1370–1386.

    Article  PubMed  Google Scholar 

  • Woolrich, M.W., Behrens, T.E., & Smith, S.M. (2004a). Constrained linear basis sets for HRF modelling using variational Bayes. NeuroImage, 21(4), 1748–1761.

    Article  PubMed  Google Scholar 

  • Woolrich, M.W., Jenkinson, M., Brady, J.M., & Smith, S.M. (2004b). Fully Bayesian spatio-temporal modeling of FMRI data. IEEE Transactions on Medical Imaging, 23(2), 213–231.

    Article  PubMed  Google Scholar 

  • Worsley, K.J., Liao, C.H., Aston, J., Pere, V., Dunackn, G.H., Morales, F., & Evans, A.C. (2002). A general statistical analysis for fMRI data. NeuroImage, 15, 1–15.

    Article  PubMed  Google Scholar 

  • Worsley, K.J., Marrett, S., Neelin, P., Vandal, A.C., Friston, K.J., & Evans, A.C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4(1), 58–73.

    Article  PubMed  Google Scholar 

  • Zhou, B., Konstorum, A., Duong, T., Tiue, K.H., Wells, W.M., Grown, G.G., Stern, H.S., & Shanbaba, B. (2012). A hierarchical modeling approach to data analysis and study desgin in a multi-site experimental FMRI study. Psychometrika.

Download references

Acknowledgements

Support for this research was provided in part by the National Center for Research Resources (P41-RR14075, R01 RR16594, P41-009874, the NCRR BIRN Morphometric Project BIRN002, and Functional Imaging Biomedical Informatics Research Network (FBIRN) U24 RR021382), the National Institute for Biomedical Imaging and Bioengineering (R01 EB001550, R01EB006758), as well as by the Department of Energy (DE-F02-99ER62764-A012) to the Mind Research Network (previously known as the MIND Institute).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Douglas N. Greve.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greve, D.N., Brown, G.G., Mueller, B.A. et al. A Survey of the Sources of Noise in fMRI. Psychometrika 78, 396–416 (2013). https://doi.org/10.1007/s11336-012-9294-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-012-9294-0

Key words

Navigation