Skip to main content
Log in

Entanglement under equilibrium establishing in spin systems subjected to radiofrequency field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the entanglement evolution in a dipolar-coupled spin system irradiated by a radiofrequency (RF) field in quasi-equilibrium state characterized by a two-temperature density matrix. Process of the establishment of equilibrium is in the equalization of these temperatures. The method of the nonequilibrium statistical operator in a rotating frame is used to describe the evolution of the spin system. It is shown that the equilibrium establishment has nonexponential character, and the time needed for this establishment depends strongly on the RF field strength. Particularly, the weak RF irradiation increases the lifetime of entanglement. Temporal and temperature dependencies of the concurrence of spin pairs are obtained and discussed. It is shown that application of RF field increases the time of the equilibrium establishment (up to order of 1,000 times) and lifetime of the existence of entangled states (up to order of 1,000 times). Thus, with the help of RF irradiation, we can govern the relaxation process and control entanglement in the system. The obtained results can be used for analysis of more complex spin systems because dipole–dipole interaction decreases proportionally to inverse third power of the distance between the spins, and influence of far way spins can be negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information, vol. I and II. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  2. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 885–942 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: Quantum discord and other measures of quantum correlation. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  5. Amico, L., Osterloh, A.: Bethe Ansatz approach to the pairing fluctuations in the mesoscopic regime. J. Phys. A 37, 291–302 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Doronin, S.I., Fel’dman, E.B., Kucherov, M.M., Pyrkov, A.N.: Entanglement of systems of dipolar coupled nuclear spins at the adiabatic demagnetization. J. Phys.: Condens. Matter 21, 025601 (5 pp.) (2009)

    Google Scholar 

  7. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement of dipolar coupling spins. Quantum Inf. Process. 10, 307–315 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement in dipolar coupling spin system in equilibrium state. Quantum Inf. Process. 11, 1603–1617 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Adiabatic demagnetization and generation of entanglement in spin systems. Phys. Lett. A 376, 925–929 (2012)

    Article  ADS  Google Scholar 

  10. Galve, F., Pachon, L.A., Zueco, D.: Bringing entanglement to the high temperature limit. Phys. Rev. Lett. 105, 180501 (4 pp.) (2010)

    Google Scholar 

  11. Vedral, V.: Quantum physics: hot entanglement. Nature 468, 769–770 (2010)

    Article  ADS  Google Scholar 

  12. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Fading entanglement near an equilibrium state. Phys. Rev. A 86(3), 032336 (6 pp.) (2012)

    Google Scholar 

  13. Atsarkin, V.A., Rodak, M.I.: Temperature of spin-spin interactions in electron spin resonance. Usp. Fiz. Nauk 107, 3 (1972) (Engl. Trans. Sov. Phys.-Usp. 15, 251–265 (1972) )

    Google Scholar 

  14. Goldman, M.: Spin Temperature and Nuclear Magnetic Resonance in Solids. Oxford University, New York (1970)

    Google Scholar 

  15. Amico, L., Osterloh, A., Plastina, F., Fazio, R., Palma, G.M.: Dynamics of entanglement in one-dimensional spin systems. Phys. Rev. A 69, 022304 (24 pp.) (2004)

    Google Scholar 

  16. Subrahmanyam, V.: Entanglement dynamics and quantum-state transport in spin chains. Phys. Rev. A 69, 034304 (4 pp.) (2004)

    Google Scholar 

  17. Buric, N.: Influence of the thermal environment on entanglement dynamics in small rings of qubits. Phys. Rev. A 77, 012321 (10 pp.) (2008)

    Google Scholar 

  18. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L. : Dynamics of entanglement in a one-dimensional Ising chain. Phys. Rev. A, 77, 062330 (6 pp.) (2008)

    Google Scholar 

  19. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Nuclear polarization and entanglement in spin systems. Quantum Inf. Process. 8, 283–291 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fel’dman, E.B., Pyrkov, A.N.: Evolution of spin entanglement and entanglement witness in multiple quantum NMR experiments. JETP Lett. 88, 454–457 (2008)

    Article  Google Scholar 

  21. Redfield, A.G.: Nuclear magnetic resonance saturation and rotary saturation in solids. Phys. Rev. 98, 1787–1809 (1955)

    Article  ADS  Google Scholar 

  22. Provotorov, B.N.: Magnetic resonance saturation in crystal. Sov. Phys. JETP 14, 1126–1131 (1962)

    MathSciNet  Google Scholar 

  23. Jeener, J., Eisendrath, H., van Steenwinkel, R.: Thermodynamics of spin systems in solids. Phys. Rev. A 133, A478–A490 (1964)

    Article  ADS  Google Scholar 

  24. Abragam, A., Goldman, M.: Nuclear Magnetism: Order and Disorder. Clarendon Press, Oxford (1982)

    Google Scholar 

  25. Callaghan, P.T., Trotter, C.M., Jolley, K.W.: A pulsed field gradient system for a Fourier transform spectrometer. J. Magn. Reson. 37, 247–259 (1980)

    ADS  Google Scholar 

  26. Abragam, A.: The Principles of Nuclear Magnetism. Clarendon Press, Oxford (1961)

    Google Scholar 

  27. Anderson, A.G., Hartman, S.R.: Nuclear magnetic resonance in the demagnetized state. Phys. Rev. 128, 2023–2041 (1962)

    Article  ADS  MATH  Google Scholar 

  28. Jeener, J., Bois, R., Du, Broekaert, P.: “Zeeman” and “dipolar” spin temperatures during a strong rf irradiation. Phys. Rev. 135, A1959–A1961 (1965)

    Article  Google Scholar 

  29. Franz, J.R., Slichter, C.P.: Studies of perturbation theory and spin temperature by rotary saturation of spins. Phys. Rev. 148, 287–298 (1966)

    Article  ADS  Google Scholar 

  30. Kunitomo, M., Hashi, T.: Adiabatic demagnetization in the doubly rotating frame. Phys. Lett. 34A, 157–158 (1971)

    Article  ADS  Google Scholar 

  31. Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. Consultants Bureau, New York (1974)

    Google Scholar 

  32. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits phys. Rev. Lett. 80, 2245–2258 (1998)

    Article  ADS  Google Scholar 

  33. Cho, G., Yesinowski, J.P.: \(^{1}\text{ H }\) and \(^{19}\text{ F }\) multiple-quantum NMR dynamics in quasi-one-dimensional spin clusters in apatites. J. Phys. Chem. 100, 15716–15725 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Furman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furman, G.B., Meerovich, V.M. & Sokolovsky, V.L. Entanglement under equilibrium establishing in spin systems subjected to radiofrequency field. Quantum Inf Process 13, 309–321 (2014). https://doi.org/10.1007/s11128-013-0651-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0651-4

Keywords

Navigation