Skip to main content
Log in

Developing an engineered antimicrobial/prophylactic system using electrically activated bactericidal metals

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The increased use of Residual Hardware Devices (RHDs) in medicine combined with antimicrobial resistant-bacteria make it critical to reduce the number of RHD associated osteomyelitic infections. This paper proposes a surface treatment based on ionic emission to create an antibiotic environment that can significantly reduce RHD associated infections. The Kirby-Bauer agar gel diffusion technique was adopted to examine the antimicrobial efficacy of eight metals and their ionic forms against seven microbes commonly associated with osteomyelitis. Silver ions (Ag+) showed the most significant bactericidal efficacy. A second set of experiments, designed to identify the best configuration and operational parameters for Ag+ based RHDs addressed current and ionic concentrations by identifying and optimizing parameters including amperage, cathode and anode length, separation between anode and cathode, and surface charge density. The system demonstrated an unparalleled efficacy. The concept was then implemented during in vitro testing of an antimicrobial hip implant, RHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lew DP, Waldvogel FA. Osteomyelitis. N Engl J Med. 1997;336:999–1008.

    Article  CAS  PubMed  Google Scholar 

  2. Total Knee and Total Hip Replacements on the Rise in Canada. In: Canadian institute for health information––news. 2002. http://www.cihi.ca/cihiweb/dispPage.jsp?cw_page=media_30jan2002_e. Accessed March 3 2010.

  3. Darouiche RO. Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis. 2001;33:1567–72.

    Article  CAS  PubMed  Google Scholar 

  4. Ehrlich GD, Stoodley P, Kathju S, Zhao Y, McLeod BR, Balaban N, et al. Engineering approaches for the detection and control of orthopaedic biofilm infections. Clin Orthop Relat Res. 2005;437:59–66.

    Article  PubMed  Google Scholar 

  5. Schierholz JM, Rump AF, Pulverer G, Beuth J. Anti-infective catheters: novel strategies to prevent nosocomial infections in oncology. Anticancer Res. 1998;18:3629–38.

    CAS  PubMed  Google Scholar 

  6. Stoodley P, Kathju S, Hu FZ, Erdos G, Levenson JE, Mehta N, et al. Molecular and imaging techniques for bacterial biofilms in joint arthroplasty infections. Clin Orthop Relat Res. 2005;437:31–40.

    Article  PubMed  Google Scholar 

  7. Bengtson S. Prosthetic osteomyelitis with special reference to knee: risks and treatment costs. Ann Med. 1993;25:523–9.

    CAS  PubMed  Google Scholar 

  8. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350:1422–9.

    Article  CAS  PubMed  Google Scholar 

  9. Arciola CR, Alvi FI, An YH, Campoccia D, Montanaro L. Implant infection and infection resistant materials: a mini review. Int J Artif Organs. 2005;28:1119–25.

    CAS  PubMed  Google Scholar 

  10. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–93.

    Article  CAS  PubMed  Google Scholar 

  11. Vinh DC, Embil JM. Device-related infections: a review. J Long Term Eff Med Implants. 2005;15:467–88.

    Article  PubMed  Google Scholar 

  12. Kochwa S, Litwak RS, Rosenfield RE, Leonard EF. Blood elements at foreign surfaces: a biochemical approach to study the adsorption of plasma proteins. Ann NY Acad Sci. 1977;283:37–49.

    Article  CAS  ADS  Google Scholar 

  13. Vaudaux P, Pittet D, Haeberli A, Huggler E, Nydegger UE, Lew DP, et al. Host factors selectively increase staphylococcal adherence on inserted catheters––a role for fibronectin and fibrinogen or fibrin. J Infect Dis. 1989;160:865–75.

    CAS  PubMed  Google Scholar 

  14. Vaudaux P, Pittet D, Haeberli A, Lerch PG, Morgenthaler JJ, Proctor RA, et al. Fibronectin is more active than fibrin or fibrinogen in promoting Staphylococcus aureus adherence to inserted intravascular catheters. J Infect Dis. 1993;167:633–41.

    CAS  PubMed  Google Scholar 

  15. Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs. 2005;28:1062–8.

    Google Scholar 

  16. Sia IG, Berbari EF, Karchmer AW. prosthetic joint infections. Infect Dis Clin North Am. 2005;19:885–914.

    Google Scholar 

  17. Grogan TJ, Dorey F, Rollins J, Amstutz HC. Deep sepsis following total knee arthroplasty: ten year experience at the University of California at Los Angles Medical Center. J Bone Jt Surg (Am). 1986;68:226–34.

    CAS  Google Scholar 

  18. March PK, Cotler JM. Management of an anaerobic infection in a prosthetic knew with long-term antibiotics alone: a case report. Clin Orthoped. 1981;155:133–5.

    Google Scholar 

  19. Insall JN, Thomposon FM, Brause BD. Two-stage reimplantation for salvage of infected total knee arthroplasty. J Bone Jt Surg (Am). 1983;65:1087–98.

    CAS  Google Scholar 

  20. Johnson D, Bannister G. The outcome of infected arthroplasty of the knee. J Bone Jt Surg (Br). 1986;68:289–91.

    CAS  Google Scholar 

  21. Mader JT, Nordern C, Nelson JD, Calandra GB. Evaluation of new anti-infective drugs for the treatment of osteomyelitis in adults. Clin Infect Dis. 1992;15(Suppl. 1):S155–61.

    PubMed  Google Scholar 

  22. Mietzner S, Schwille RC, Farley A, Wald ER, Ge JH, States SJ, et al. Efficacy of thermal treatment and copper-silver ionization for controlling Legionella pneumophila in high volume hot water plumbing systems in hospitals. Am J Infect Control. 1997;25:452–7.

    Article  CAS  PubMed  Google Scholar 

  23. Gager L, Ellison EM. Generalized [therapeutic] argyria. Int Clin. 1935;4:1181.

    Google Scholar 

  24. Hill WR, Pillsbury DM, Argyria. The pharmacology of silver. Baltimore: The Williams and Wilkins Co; 1939.

    Google Scholar 

  25. Klasen HJ. Historical review of the use of silver in the treatment of burns part 1: early uses. Burns. 2000;26:117–30.

    Article  CAS  PubMed  Google Scholar 

  26. Klasen HJ. Historical review of the use of silver in the treatment of burns part 2: renewed interest for silver. Burns. 2000;26:131–8.

    Article  CAS  PubMed  Google Scholar 

  27. Sudmann E, Vik H, Rait M, Todnem K, Andersoen KJ, Julsham K. Muscle paralysis in patients with total hip prosthesis and silver impregnated antibacterial bone cement. Acta Orthoped Scand. 1993;56:534.

    Google Scholar 

  28. Rungby J, Eliermann-Eriksen S, Danscher G. Effects of selenium on toxicity and ultra-structural localization of silver in cultured macrophages. Arch Toxicol. 1987;61:40–5.

    Google Scholar 

  29. Rungby J. Experimental argyrosis: ultrastructural localization of silver in rat eye. Exper Mol Pathol. 1986;45:22–30.

    Article  CAS  Google Scholar 

  30. Agency for Toxic Substances, Disease Registry [ATSDR]. Toxicological profile for cadmium. Atlanta, GA: U.S: Department of Health and Human Services, Public Health Service; 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Fuller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuller, T.A., Wysk, R.A., Charumani, C. et al. Developing an engineered antimicrobial/prophylactic system using electrically activated bactericidal metals. J Mater Sci: Mater Med 21, 2103–2114 (2010). https://doi.org/10.1007/s10856-010-4071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4071-z

Keywords

Navigation