Skip to main content
Log in

EnVision: taking the pulse of our twin planet

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

EnVision is an ambitious but low-risk response to ESA’s call for a medium-size mission opportunity for a launch in 2022. Venus is the planet most similar to Earth in mass, bulk properties and orbital distance, but has evolved to become extremely hostile to life. EnVision’s 5-year mission objectives are to determine the nature of and rate of change caused by geological and atmospheric processes, to distinguish between competing theories about its evolution and to help predict the habitability of extrasolar planets. Three instrument suites will address specific surface, atmosphere and ionosphere science goals. The Surface Science Suite consists of a 2.2 m2 radar antenna with Interferometer, Radiometer and Altimeter operating modes, supported by a complementary IR surface emissivity mapper and an advanced accelerometer for orbit control and gravity mapping. This suite will determine topographic changes caused by volcanic, tectonic and atmospheric processes at rates as low as 1 mm a − 1. The Atmosphere Science Suite consists of a Doppler LIDAR for cloud top altitude, wind speed and mesospheric structure mapping, complemented by IR and UV spectrometers and a spectrophotopolarimeter, all designed to map the dynamic features and compositions of the clouds and middle atmosphere to identify the effects of volcanic and solar processes. The Ionosphere Science Suite uses a double Langmiur probe and vector magnetometer to understand the behaviour and long-term evolution of the ionosphere and induced magnetosphere. The suite also includes an interplanetary particle analyser to determine the delivery rate of water and other components to the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson, F.S., Smrekar, S.E.: Global mapping of crustal and lithospheric thickness on Venus. J. Geophys. Res. 111, E08006 (2006)

    Article  ADS  Google Scholar 

  2. Baker, V.R., Komatsu, G., Parker, T.J., Gulick, V.C., Kargel, J.S., Lewis, J.S.: Channels and valleys on Venus: Preliminary analysis of Magellan data. J. Geophys. Res. 97, 13421–13444 (1992)

    Article  ADS  Google Scholar 

  3. Barabash, S., Fedorov, A., Sauvaud, J.A., Lundin, R., Russell, C.T., Futaana, Y., Zhang, T.L., Andrersson, H., Brinkfeldt, K., Grigoriev, A., Holmstrom, M., Yamauchi, M., Asamura, K., Baumjohann, W., Lammer, H., Coates, A.J., Kataria, D.O., Linder, D.R., Curtis, C.C., Hsieh, K.C., Sandel, B.R., Grande, M., Gunell, H., Koskinen, H.E.J., Kallio, E., Riihela, P., Sales, T., Schmidt, W., Kozyra, J., Krupp, N., Franz, M., Woch, J., Luhmann, J., McKenna-Lawlor, S., Mazelle, C., Thocaven, J.-J., Orsini, S., Cerulli-Irelli, R., Mura, M., Milillo, M., Maggi, M., Roelof, E., Brandt, P., Szego, K., Winningham, J.D., Frahm, R.A., Scherrer, J., Sharber, J.R., Wurz, P., Bochsler, P.: The loss of ions from Venus through the plasma wake. Nature 450, 650–653 (2007)

    Article  ADS  Google Scholar 

  4. Brace, L.H., Kasprzak, W.T., Taylor, H.A., Theis, R.F., Russell, C.T., Barnes, A., Mihalov, J.D., Hunten, D.M.: The ionotail of Venus: Its configuration and evidence for ion escape. J. Geophys. Res. 92, 15–26 (1987)

    Article  ADS  Google Scholar 

  5. Basilevsky, A.T., Head, J.W.: The geologic history of Venus: A stratigraphic view. J. Geophys. Res. 103, 8531 (1998)

    Article  ADS  Google Scholar 

  6. Basilevsky, A.T., Head, J.W.: Rifts and large volcanoes of Venus: global assessment of their age relations with regional plains. J. Geophys. Res. 105, 24583 (2000)

    Article  ADS  Google Scholar 

  7. Biggs, J., Bergman, E., Emmerson, B., Funning, G., Jackson, J., Parsons, B., Wright, T.: Fault identification for buried strike-slip earthquakes using InSAR: the 1994 and 2004 Al Hoceima, Morocco earthquakes. Geophys. J. Int. 166, 1347–1362 (2006)

    Article  ADS  Google Scholar 

  8. Bondarenko, N.V., Head, J.W., Ivanov, M.A.: Present-day volcanism on Venus: evidence from microwave radiometry. Geophys. Res. Lett. 37, 23202 (2010)

    Article  ADS  Google Scholar 

  9. Bullock, M.A., Grinspoon, D.H.: The stability of climate on Venus. J. Geophys. Res. 101, 7521 (1996)

    Article  ADS  Google Scholar 

  10. Campbell, B.A.: Surface formation rates and impact crater densities on Venus. J. Geophys. Res. 104, 21951 (1999)

    Article  ADS  Google Scholar 

  11. Carter, L.M., Campbell, D.B., Campbell, B.A.: Impact crater related surficial deposits on Venus: Multipolarization radar observations with Arecibo. J. Geophys. Res. 109, 06009 (2004)

    Article  Google Scholar 

  12. Chang, Wu-L., Smith, R.B., Wicks, C., Farrell, J.M., Puskas, C.M.: Accelerated uplift and magmatic intrusion of the Yellowstone caldera, 2004 to 2006. Science 318, 952–956 (2007)

    Article  ADS  Google Scholar 

  13. Christophe, B., Foulon, B., Levy, A., Anderson, J.D., Sumner, T.J., Bertolami, O., Gil, P., Páramos, J., Progrebenko, S.V., Gurtvis, L., Reynaud, S., Courty, J.-M., Asmar, S.W., Métris, G., Bério, P., Bingham, R., Kent, B., Olsen, O., Andersen, P.H., Dittus, H., Lämmerzahl, K., Theil, S., Rievers, B., Bremer, S.: Gravity advanced package, an accelerometer package for Laplace or tandem missions. In: Charbonnel, C., Combes, F., Samadi, R. (eds.) Proceedings of theAnnual meeting of the French Society of Astronomy and Astrophysics. SF2A, pp. 103–106. (2008)

    Google Scholar 

  14. Ebmeier, S.K., Biggs, J., Mather, T.A., Wadge, G.: Steady downslope movement on the western flank of Arenal Volcano, Costa Rica. Geochem. Geophys. Geosystems. 11, 12004 (2010). doi:10.1029/2010GC003263

    Article  ADS  Google Scholar 

  15. Esposito, L.W.: Long term changes in Venus sulfur dioxide. Adv. Space Res. 5, 85–90 (1985)

    Article  ADS  Google Scholar 

  16. Florensky, C.P., Basilevsky, A.T., Kryuchkov, V.P., Kusmin, R.O., Nikolaeva, O.V., Pronin, A.A., Chernaya, I.M., Tyuflin, Y.S., Selivanov, A.S., Naraeva, M.K., Ronca, L.B.: Venera 13 and Venera 14: sedimentary rocks on Venus? Science 221, 57–59 (1983). doi:10.1126/science.221.4605.57

    Article  ADS  Google Scholar 

  17. Ford, P.G., Pettengill, G.H.: Venus topography and kilometer-scale slopes. J. Geophys. Res. 97, 13103–13114 (1992)

    Article  ADS  Google Scholar 

  18. Fournier, T.J., Pritchard, M.E., Riddick, S.N.: Duration, magnitude, and frequency of subaerial volcano deformation events: new results from Latin America using InSAR and a global synthesis. Geochem. Geophys. Geosystems. 11, Q01003, 29 (2010). doi:10.1029/2009GC002558

    Article  Google Scholar 

  19. Fox, J.L.: Morphology of the dayside ionosphere of Venus: implications for ion outflows. J. Geophys. Res. 113, E11001 (2008). doi:10.1029/2008JE003182

    Article  ADS  Google Scholar 

  20. Ghail, R.C.: Structure and evolution of southeast Thetis Regio. J. Geophys. Res. 107, 5060 (2002)

    Article  Google Scholar 

  21. Gilmore, M.S., Collins, G.C., Ivanov, M.A., Marinangeli, L., Head, J.W.: Style and sequence of extensional structures in tessera terrain, Venus. J. Geophys. Res. 103, 16813 (1998)

    Article  ADS  Google Scholar 

  22. Grün, E., Zook, H.A., Baguhl, M., Balogh, A., Bame, S.J., Fechtig, H., Forsyth, R., Hanner, M.S., Horanyi, M., Kissel, J., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Phillips, J.L., Polanskey, C., Schwehm, G., Siddque, N., Staubach, P., Svestka, J., Taylor, A.: Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362, 428–430 (1993)

    Article  ADS  Google Scholar 

  23. Guest, J.E., Stofan, E.R.: A new view of the stratigraphic history of Venus. Icarus 139, 55 (1999)

    Article  ADS  Google Scholar 

  24. Hansen, J.E., Hovenier, J.W.: Interpretation of the polarization of Venus. J. Atmos. Sci. 31, 1137–1160 (1974)

    Article  ADS  Google Scholar 

  25. Hashimoto, G.L., Imamura, T.: Elucidating the rate of volcanism on Venus: detection of lava eruptions using near-infrared observations. Icarus. 154, 239 (2001)

    Article  ADS  Google Scholar 

  26. Johnson, C.L., Richards, M.A.: A conceptual model for the relationship between coronae and large-scale mantle dynamics on Venus. J. Geophys. Res. 108, 5058 (2003)

    Article  Google Scholar 

  27. Jones, A.P., Pickering, K.: Evidence for aqueous fluid – sediment transport and erosional processes on Venus. J. Geol. Soc. London. 160, 319–327 (2003)

    Article  Google Scholar 

  28. Komatsu, G., Baker, V.R.: Meander properties of Venusian channels. Geology 22, 67 (1994)

    Article  ADS  Google Scholar 

  29. Komatsu, G., Gulick, V.C., Baker, V.R.: Valley networks on Venus. Geomorph. 37(3–4), 225–240 (2001)

    Article  ADS  Google Scholar 

  30. Kovacs, T.A., Mccormick, M.P.: Observations of typhoon Melissa during the Lidar In-space Technology Experiment (LITE). J. Appl. Med. 42, 1003–1013 (2003)

    Article  ADS  Google Scholar 

  31. Kumar, P.: An alternative kinematic interpretation of Thetis boundary shear zone, Venus: evidence for strike-slip ductile duplexes. J. Geophys. Res. 110, 07001 (2005)

    Article  Google Scholar 

  32. Lammer, H., Lichtenegger, H.I.M., Biernat, H.K., Erkaev, N.V., Arshukova, I.L., Kolb, C., Gunell, H., Lukyanov, A., Holmstrom, M., Barabash, S., Zhang T.L., Baumjohann W.: Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54(13–14),1445–1456 (2006)

    Google Scholar 

  33. Limaye, S.S., Markiewicz, W.J., Titov, D.V.: A bright spot on Venus. EGU abtracts, 2010EGUGA.1211468L (2010)

  34. Luhmann, J.G., Kasprzak, W.T., Russell, C.T.: Space weather at Venus and its potential consequences for atmospheric evolution. J. Geophys. Res. 112, E04S10 (2007). doi:10.1029/2006JE002820

    Article  ADS  Google Scholar 

  35. Marcq, E., Belyaev, D., Montmessin, F., Fedorova, A., Bertaux, J.-L., Vandaele, A.C., Neefs, E.: An investigation of the SO2 content of the Venusian mesosphere using SPICAV-UV in nadir mode. Icarus 211, 58–69 (2011)

    Article  ADS  Google Scholar 

  36. Marinangeli, L., Gilmore, M.S.: Geologic evolution of the Akna Montes-Atropos Tessera region, Venus. J. Geophys. Res. 105, 12053 (2000)

    Article  ADS  Google Scholar 

  37. Markiewicz, W., Titov, D., Limaye, S., Keller, H., Ignatiev, N., Jaumann, R., Thomas, N., Michalik, H., Moissl, R., Russo, P.: Morphology and dynamics of the upper cloud layer of Venus. Nature 450, 633 (2007)

    Article  ADS  Google Scholar 

  38. McComas, D.J., Spence, H.E., Russell, C.T., Saunders, M.A.: The average magnetic field draping and consistent plasma properties of the Venus magnetotail. J. Geophys. Res. 91, 7939–7953 (1986)

    Article  ADS  Google Scholar 

  39. Müller, N., Helbert, J., Hashimoto, G., Tsang, C., Erard, S., Piccioni, G., Drossart, P.: Venus surface thermal emission at 1 μm in VIRTIS imaging observations: evidence for variation of crust and mantle differentiation conditions. J. Geophys. Res. 113, 1–21 (2008)

    Article  Google Scholar 

  40. Nimmo, F., McKenzie, D.: Volcanism and tectonics on Venus. Ann. Rev. Earth Planet. Sci. 26, 23–51 (1998)

    Article  ADS  Google Scholar 

  41. Phillips, J.L., Luhmann, J.G, Russell, C.T.: Dependence of Venus ionopause altitude and ionospheric magnetic field on solar wind dynamic pressure. Adv. Space Res. 5, 173–176 (1985)

    Article  ADS  Google Scholar 

  42. Piccialli, A., Titov, D.V., Grassi, D., Khatuntsev, I., Drossart, P., Piccioni, G., Migliorini, A.: Cyclostrophic winds from the visible and infrared thermal imaging spectrometer temperature sounding: a preliminary analysis. J. Geophys. Res. 113, E00B11 (2008)

    Article  Google Scholar 

  43. Schubert, G., Sandwell, D.T.: A global survey of possible subduction sites on Venus. Icarus 117, 173–196 (1995)

    Article  ADS  Google Scholar 

  44. Smrekar, S.E., Stofan, E.R., Mueller, N., Treiman, A., Elkins-Tanton, L., Helbert, J., Piccioni, G., Drossart, P.: Recent hotspot volcanism on venus from VIRTIS emissivity data. Science 328, 605 (2010)

    Article  ADS  Google Scholar 

  45. Snik F., Rietjens, J.H.H., van Harten, G., Stam, D.M., Keller, C.U., Smit, J.M., Laan, E.C., Verlaan, A.D., der Horst, R., Navarro, R., Wielinga, K., Moon, S.G., Voors, R.: SPEX: the spectropolarimeter for planetary exploration. In: Proc. SPIE 7731, 77311B (2010). doi:10.1117/12.857941

  46. Stevens, N.F., Wadge, G., Williams, C.A.: Post-emplacement lava subsidence and the accuracy of ERS InSAR digital elevation models of volcanoes. Int. J. Remote Sens. 22, 819–828 (2001)

    Article  ADS  Google Scholar 

  47. Stofan, E.R., Brian, A.W., Guest, J.E.: Resurfacing styles and rates on Venus: assessment of 18 Venusian quadrangles. Icarus 173, 312–321 (2005)

    Article  ADS  Google Scholar 

  48. Taylor, F., Grinspoon, D.: Climate evolution of Venus. J. Geophys. Res. 114, E00B40 (2009)

    Article  ADS  Google Scholar 

  49. Tuckwell, G., Ghail, R.C.: A 400-km-scale strike-slip zone near the boundary of Thetis Regio, Venus. Earth Planet. Sci. Lett. 211, 45–55 (2003)

    Article  ADS  Google Scholar 

  50. Turcotte, D.: An episodic hypothesis for Venusian tectonics. J. Geophys. Res. 98, 17061–17068 (1993)

    Article  ADS  Google Scholar 

  51. Turcotte, D.: How does Venus lose heat? J. Geophys. Res. 100, 16931 (1995)

    Article  ADS  Google Scholar 

  52. Turcotte, D., Morein, G., Roberts, D., Malamud, B.D.: Catastrophic resurfacing and episodic subduction on Venus. Icarus. 139, 49–54 (1999)

    Article  ADS  Google Scholar 

  53. Waltham, D., Pickering, K., Bray, V.: Particulate gravity currents on Venus. J. Geophys. Res. 113, 02012 (2008)

    Article  Google Scholar 

  54. Wicks Jr, C., Thatcher, W., Dzurisin, D.: Migration of fluids beneath Yellowstone caldera inferred from satellite radar interferometry. Science 282, 458 (1998)

    Article  ADS  Google Scholar 

  55. Zebker, H.A., Rosen, P.A., Goldstein, R.M., Gabriel, A., Werner, C.L.: On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake. J. Geophys. Res. 99, 19617 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank ESA for their thorough evaluation of this proposed mission and the valuable feedback provided.

Dr Mitchell’s was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Ghail.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghail, R.C., Wilson, C., Galand, M. et al. EnVision: taking the pulse of our twin planet. Exp Astron 33, 337–363 (2012). https://doi.org/10.1007/s10686-011-9244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-011-9244-3

Keywords

Navigation