Skip to main content
Log in

Multicore Vesicles: Hyperosmolarity and l-DOPA Induce Homotypic Fusion of Dense Core Vesicles

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aim

A fraction of vesicles in cells treated with hypertonic solution exhibit multiple dense cores and this is enhanced by treatment with l-3,4–dihydroxyphenylalanine (l-DOPA). These cells were examined to determine if the multicore vesicles are the product of endocytosis or homotypic fusion.

Methods

Electron microscopy was used to determine the number of multicore vesicles and amperometry was used to examine if the multicore vesicles are a competent fraction of the readily releasable pool.

Results

In this study, we observed that a substantial portion (15.3%) of large dense core vesicles in PC12 cells contained multiple cores in hypertonic saline loaded with l-DOPA, and amperometric measurements show a bimodal distribution of quantal sizes in treated cells.

Conclusions

The results suggest that the multicored vesicles are formed from homotypic fusion of LCDVs prior to exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

PC12:

Rat Pheochromocytoma

TEM:

Transmission Electron Microscopy

l-DOPA:

l-3,4-dihydroxyphenylalanine

VMAT:

Vesicular Monoamine Transporter

AL:

Attoliters (10−18l)

References

  • Aherne W, Dunnill M (1982) Methods of estimating size distibutions. In: Morphometry bath, The Pitman Press, pp 75–102

  • Amatore C, Arbault S, Bonifas I, Bouret Y, Erard M, Ewing AG, Sombers LA (2005) Correlation between vesicle quantal size and fusion pore release in chromaffin cell exocytosis. Biophys J 88:4411–4420

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Klingauf J, Tsien RW (2003) Fusion pore modulation as a presynaptic mechanism contributing to expression of long-term potentiation. Philos Trans R Soc Lond B Biol Sci 358:695–705

    Article  PubMed  Google Scholar 

  • Cohen FS, Akabas MH, Finkelstein A (1982) Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. Science 217:458–460

    Article  PubMed  CAS  Google Scholar 

  • Colliver TL, Pyott SJ, Achalabun M, Ewing AG (2000) VMAT-Mediated changes in quantal size and vesicular volume [In Process Citation]. J Neurosci 20:5276–5282

    PubMed  CAS  Google Scholar 

  • Danon D, Goldstein L, Marikovsky Y, Skutelsky E (1972) Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res 38:500–510

    Article  PubMed  CAS  Google Scholar 

  • Farquhar MG (1978) Recovery of surface membrane in anterior pituitary cells. Variations in traffic detected with anionic and cationic ferritin. J Cell Biol 77:R35–R42

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky M (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A–138A

    Google Scholar 

  • Kozminski KD, Gutman DA, Davila V, Sulzer D, Ewing AG (1998) Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells. Anal Chem 70:3123–3130

    Article  PubMed  CAS  Google Scholar 

  • Pothos E, Desmond M, Sulzer D (1996) l-3,4-dihydroxyphenylalanine increases the quantal size of exocytotic dopamine release in vitro. J Neurochem 66:629–636

    Article  PubMed  CAS  Google Scholar 

  • Pothos EN (2002) Regulation of dopamine quantal size in midbrain and hippocampal neurons. Behav Brain Res 130:203–207

    Article  PubMed  CAS  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  PubMed  CAS  Google Scholar 

  • Tooze SA, Huttner WB (1990) Cell-free protein sorting to the regulated and constitutive secretory pathways. Cell 60:837–847

    Article  PubMed  CAS  Google Scholar 

  • Tooze SA, Flatmark T, Tooze J, Huttner WB (1991) Characterization of the immature secretory granule, an intermediate in granule biogenesis. J Cell Biol 115:1491–1503

    Article  PubMed  CAS  Google Scholar 

  • Wendler F, Page L, Urbe S, Tooze SA (2001) Homotypic fusion of immature secretory granules during maturation requires syntaxin 6. Mol Biol Cell 12:1699–1709

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Missy Hazen and Dr. Gang Ning for assistance with TEM, Dr. Gong Chen for equipment, Paula Powell for software expertise, and Nicole Shakir-Botteri for assistance with cell culture. This work was supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew G. Ewing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sombers, L.A., Maxson, M.M. & Ewing, A.G. Multicore Vesicles: Hyperosmolarity and l-DOPA Induce Homotypic Fusion of Dense Core Vesicles. Cell Mol Neurobiol 27, 681–685 (2007). https://doi.org/10.1007/s10571-007-9156-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9156-y

Keywords

Navigation