Skip to main content
Log in

On the Accuracy of the Calibration of Superconducting Gravimeters Using Absolute and Spring Sensors: a Critical Comparison

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Over the past two decades, superconducting gravimeters (SGs) have been a key tool to investigate a number of geophysical processes leading to time-variable gravity changes. As SGs are relative meters, even though they are the most sensitive and stable devices currently available, they need to be accurately calibrated. Each branch of Earth sciences that benefits from high-precision gravity monitoring demands calibration of gravity sensors to accuracy of better than 0.1%. This research deals with a calibration experiment performed at the Strasbourg (France) SG site by means of two FG5 (#206 and #211) absolute gravimeters (AGs) and new-generation spring meters (Scintrex Ltd. Autograv CG-3M and CG5 and Microg-LaCoste gPhone). Our goal is to try to use the newest generation of spring mechanical gravimeters (MGs) for calibrating SGs. We discuss the results in terms of precision and accuracy of the SG calibration by means of different metrological and methodological approaches. With the FG5 #211 we derive scale factors for the SG-GWR C026 located in Strasbourg in agreement with those routinely obtained since 1997 by means of the FG5 #206. This confirms that the estimation of the scale factors is independent of the AG sensor. From a moving-window regression analysis between the synthetic body tides and both the SG and MG gravity records we detect significant fluctuations of the SG scale factors over time due to the instability of the instrumental sensitivity of the MGs. Our main results demonstrate that, owing to the time variability of their sensitivity, the used spring meters, even if well calibrated, cannot be used as a stable reference for SGs. As a result, MGs are not suitable to replace AGs for SG calibration, and we conclude that currently the method using parallel recording with absolute gravity meters is still the most feasible calibration approach for SGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achilli, V., Baldi, P., Casula, G., Errani, M., Focardi, S., Guerzoni, M., Palmonari, F. and Raguni, G. (1995), A calibration system for superconducting gravimeters, Bull. Geod. 69, 73–80.

  • Amalvict, M., Hinderer, J., Boy, J-P. and Gegout, P. (2001), A three year comparison between a superconducting gravimeter (GWR C026) and an absolute gravimeter (FG5#206) in Strasbourg (France), J. Geod. Soc. Japan. 47, 334–340.

  • Arnoso, J., Vieira, R., Velez, E.J., Van Ruymbeke, M. and Venedikov, A.P. (2001), Studies of tides and instrumental performance of three gravimeters at Cueva de los Verdes (Lanzarote, Spain), J. Geod. Soc. Japan. 47, 1, 70–75.

  • Asch, G., Jahr, T., Jentzsch, G., Kiviniemi, A., Kääriäinen, J., Plag, H.-P. and Thiel, W. (1986), Loading tides along the ‚Blue Road’ Geotraverse in Fennoscandia, Prc. 10th Int. Sympos. On Earth tides, Madrid, 1985, 707–717.

  • Baker, T.F. and Bos, M.S. (2003), Validating Earth and ocean tide models using tidal gravity measurements, Geophys. J. Int. 152, 468–485.

  • Bos, M.S., and Scherneck, H.-G., (2009) Website: http://www.oso.chalmers.se/~loading/. Accessed 2009

  • Crossley, D., Hinderer, J., Casula, G., Francis, O., Hsu, H.T., Imanishi, Y., Jentzsch, G., Kääriäinen, J., Merriam, J., Meurers, B., Neumeyer, J., Richter, B., Shibuya, K., Sato, T. and Van Dam, T. (1999), Network of superconducting gravimeters benefits a number of disciplines, EOS 80 (11), 121/125–126.

  • Dehant, V., Defraigne, P. and Wahr, J.M. (1999), Tides for a convective Earth, J. Geophys. Res. 104, 1035–1058.

  • Falk, R., Harnish, M., Harnish, G., Nowak, I., Richter, B. and Wolf, P. (2001), Calibration of the superconducting gravimeter SG193, C023, CD029 and CD030, J. Geod. Soc. Japan. 47, 22–27.

  • Francis, O. Calibration of the C021 Superconducting Gravimeter in Membach (Belgium) using 47 days of absolute gravity measurements, In International Association of Geodesy Symposia, (Springer-Verlag, Berlin, 1997) 117, pp. 212–219.

  • Francis, O., Niebauer, T.M., Sasagawa, G., Klopping, F. and Gschwind, J. (1998), Calibration of a superconducting gravimeter by comparison with an absolute gravimeter FG5 in Boulder, Geophys. Res. Lett. 25, 1075–1078.

  • Francis, O. and Van Dam, T. (2002), Evaluation of the precision of using absolute gravimeters to calibrate superconducting gravimeters, Metrologia. 39, 485–488.

  • Fukuda, Y., Iwano, S., Ikeda, H., Hiraoka, Y. and Doi, K. (2005), Calibration of the superconducting gravimeter CT#043 with an absolute gravimeter FG5#210 at Syowa Station, Antarctica, Polar Geosciences. 18, 41–48.

  • Hinderer, J. and Crossley, D. (2000), Time variations in gravity and inferences on the Earth’s structure and dynamics, Surv. Geophys. 21, 1–45.

  • Hinderer, J. and Crossley, D. (2004), Scientific achievements from the first phase (1997–2003) of the Global Geodynamics Project using a worldwide network of superconducting gravimeters, J. Geodynamics. 38, 237–262.

  • Hinderer, J., Crossley, D. and Warburton, R.J., Gravimetric methods: Superconducting gravity meters. In Treatise on Geophysics (ed. Schubert G.) (Elsevier, New York, 2007) pp. 65–122.

  • Hinderer, J., Florsch, N., Mäkinen, J., Legros, H. and Faller, J.E. (1991), On the calibration of a superconducting gravimeter using absolute gravity measurements, Geophys. J. Int. 106, 491–497.

  • Imanishi, Y., Higashi, T. and Fukuda, Y. (2002), Calibration of the superconducting gravimeter T011 by parallel observation with the absolute gravimeter FG5 #210: a Bayesian approach, Geophys. J. Int. 151, 867–878.

  • Krystek, M. and Anton, M. (2007), A weighted total least-squares algorithm for fitting a straight line, Meas. Sci. Technol. 18, 3438–3442. doi:10.1088/0957-0233/18/11/025.

  • Letellier, T. (2004), Etude des ondes de marée sur les plateux continentaux. Thèse doctorale, Université de Toulouse III, Ecole Doctorale des Sciences de l’Univers, de l’Environnement et de l’Espace, 237 pp.

  • Lyard, F., Lefévre, F., Letellier, T. and Francis, O. (2006), Modelling the global ocean tides: modern insights from FES2004, Ocean Dynamics. 56 (5–6), 394–415.

  • Mathews, P.M. (2001), Consistent modeling of the effects of the diurnal tidal potential, J. Geod. Soc. Japan. 47, 219–224.

  • Melchior, P., (1994), A new data bank for tidal gravity measurements (DB92), Phys. Earth Planet. Int. 82, 125–155.

  • Melchior, P. and Francis, O. (1998), Proper Usage of the ICET Data Bank: Du bon usage de la Banque de Données ICET, Comparison with theoretical applications on Earth Models, Proc. XIII Int. Symp. on Earth Tides, Ed. B. Ducarme and P. Pâquet, July 22–25, 1997, Bruxelles, 377–396.

  • Meurers, B. (2001), Superconducting gravimetry in geophysical research today, J. Geod. Soc. Japan. 47, 300–307.

    Google Scholar 

  • Meurers, B. (2002), Aspects of gravimeter calibration by time domain comparison of gravity records, Bull. d’Inform. Marèes Terrestres. 135, 10643–10650.

  • Microg-LaCoste. (2008), gPhone/P.E.T Hardware Manual V1. 16 pp.

  • Richter, B., Wenzel, H.-G., Zürn, W. and Klopping, F. (1995a) From Chandler wobble to free oscillations: comparison of cryogenic gravimeters and other instruments in a wide period range, Phys. Earth Planet. Int. 91, 131–148.

  • Richter, B.,Wilmes, H. and Nowak, I. (1995b) The Frankfurt calibration system for relative gravimeters, Metrologia. 32, 217–223.

  • Rosat, S., Boy, J-P., Ferhat, G., Hinderer, J., Amalvict, M., Gegout, P. and Luck, B. (2009), Analysis of a 10-year (1997–2007) record of time-varying gravity in Strasbourg using absolute and superconducting gravimeters: New results on the calibration and comparison with GPS height changes and hydrology, J. Geodynamics. 48, 360–365.

  • Sato, T., Tamura, Y., Okubo, S. and Yoshida, S. (1996), Calibration of scale factor of superconducting gravimeter at Esashi using an absolute gravimeter FG5, J. Geod. Soc. Japan. 42, 225–232.

  • Scintrex Limited (1995) CG–3/3 M Autograv automated gravity meter operator manual.

  • Scintrex Limited (2006), CG5 Autograv automated gravity meter operator manual (Rev. 4). pp. 308.

  • Tamura, Y., Sato, T., Fukuda, Y. and Higashi, T. (2001), Scale factor calibration of a superconducting gravimeter at Esashi Station, Japan, using absolute gravity measurements, J. Geodesy. 71, doi:10.1007/s00190-004-0415-0.

  • Van Camp, M., Wenzel, H.-G., Schott, P., Vauterin, P. and Francis, O. (2000), Accurate transfer function determination for superconducting gravimeters, Geophys. Res. Lett. 27 (1), 37–40.

  • Van Camp, M., Williams, S.D.P. and Francis, O. (2005), Uncertainty of absolute gravity measurements, J. Geophys. Res. 110, B05406, doi:10.1029/2004JB003497.

  • van Ruymbeke, M., Somerhausen, A. and Grammatica, N. (1995) Calibration of gravimeters with the VRR 8601 calibration platform, Metrologia. 32, 209–216.

  • Wenzel, H.-G. (1996), The nanogal software: Earth tide data processing package ETERNA 3.30, Bull. d’Inform. Marèes Terrestres. 124, 9425–9439.

Download references

Acknowledgments

The authors thank the IGN of Madrid for providing the gPhone 054 and the FG5 #211 for this study and Mr S. Sainz-Maza Aparicio and Mr. P.A. Vaquero-Fernandez for their support in the installation of the meter. The authors are grateful to Walter Zürn and an anonymous referee for their valuable comments that significantly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Riccardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riccardi, U., Rosat, S. & Hinderer, J. On the Accuracy of the Calibration of Superconducting Gravimeters Using Absolute and Spring Sensors: a Critical Comparison. Pure Appl. Geophys. 169, 1343–1356 (2012). https://doi.org/10.1007/s00024-011-0398-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-011-0398-8

Keywords

Navigation