Skip to main content
Log in

Benthic phosphorus regeneration in the Potomac River Estuary

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m−2 day−1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m−2 day−1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation.

Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River.

When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aspila, K. L., Agemian, H. & Chau, A. S. Y., 1976. A semi-automated method for the determination of inorganic, organic, and total phosphate in sediments. Analyst 101: 187–197.

    PubMed  Google Scholar 

  • Bennett, J. P., 1979. Calibration of sediment transport box models. In: Potomac Estuary study, 1979 Fiscal Year Annual Report, U.S. Geological Survey, Reston, Virginia, pp. 60–71.

    Google Scholar 

  • Bennett, J. P., 1981. High-flow contributions to summer water-quality problems in the tidal Potomac River. Proc. 1980 Annual Meeting Interstate Commission on the Potomac River Basin. ICPRB General Publication 81–1.

  • Berner, R. A., 1976. Inclusion of adsorption in the modeling of early diagenesis. Earth Planet. Sci. Lett. 29: 333–340.

    Google Scholar 

  • Berner, R. A., 1980. Early Diagenesis. Princeton Press, Princeton, N. J. 241 pp.

    Google Scholar 

  • Bezrukov, P. L., 1960. Sedimentation in the northwestern Pacific Ocean. International Geological Congress, Report of Soviet Geologists: 45–58.

  • Billen, G., 1978. A budget of nitrogen recycling in North Sea sediments off the Belgian Coast. Estuarine and Coastal Marine Science 7: 127–146.

    Google Scholar 

  • Boynton, W. R., Kemp, W. M. & Osborne, C. G., 1980a. Nutrient fluxes across the sediment-water interface in the turbid zone of a coastal plain estuary. In: Kennedy V. S. (ed.) Estuarine Perspectives, pp. 93–109. Academic Press, New York.

    Google Scholar 

  • Boynton, W. R., Kemp, W. M. Osborne, C. G., Kaumeyer, K. R. & Jenkins, M. C., 1980b. Influence of water recirculation rate on in situ measurements of benthic community respiration. Unpublished manuscript, 25 pp.

  • Bray, J. T., Bricker, O. P. & Troup, B. N., 1973. Phosphate in interstitial waters of anoxic sediments: oxidation effects during sampling procedure. Science 180: 1362–1364.

    Google Scholar 

  • Callender, E. & Hammond, D. E., 1982. Nutrient exchange across the sediment-water interface in the Potomac River Estuary. Estuarine, Coastal and Shelf Science (accepted for publication).

  • Carignan, R. & Flett, R. J., 1981. Postdepositional mobility of phosphorus in lake sediments. Limnol. Oceanogr. 26: 361–366.

    Google Scholar 

  • Carpenter, J. H., 1965. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr. 10: 141–143.

    Google Scholar 

  • Cole, B. E. & Harmon, D. D., 1980. Potomac River phytoplankton productivity, nutrient regeneration, and respiration, August 1977–August 1978. U. S. Geological Survey Open-File Report 80–000. 59 pp.

  • Davis, R. B., 1974. Stratigraphic effects of tubificids in profundal lake sediments. Limnol. Oceanogr. 19: 466–488.

    Google Scholar 

  • Fillos, J. & Swanson, W. R., 1975. The release rate of nutrients from river and lake sediments. J. Wat. Pollut. Control Fedn 47: 1032–1042.

    Google Scholar 

  • Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D. G., Hartman, B. & Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. cosmochim. Acta 43: 1075–1090.

    Article  Google Scholar 

  • Garside, C., Hull, G. & Murray, S., 1978. Determination of submicromolar concentrations of ammonia in natural waters. Limnol. Oceanogr. 23: 1073–1076.

    Google Scholar 

  • Goldhaber, M. G., Aller, R. C., Cochran, J. K., Rosenfeld, K., Martens, C. S. & Berner, R. A., 1977. Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: report of the FOAM group. Am. J. Sci. 277: 193–237.

    Google Scholar 

  • Hammond, D. E. & Fuller, C., 1979. The use of radon-222 to estimate benthic exchange and atmospheric exchange rates in San Francisco Bay. In: Conomos, T. J. (Ed.) San Francisco Bay, The Urbanized Estuary, pp. 213–230. American Association for the Advancement of Science, San Francisco.

    Google Scholar 

  • Hammond, D. E. & Fuller, C., 1981. Exchange rates of radon-222 across the sediment-water interface and across the air-water interface in the Potomac River Estuary. (submitted to J. geophys. Res).

  • Hammond, D. E., Simpson, H. J. & Mathieu, G., 1977. 222-Radon distribution and transport across the sediment-water interface in the Hudson Rier estuary. J. geophys. Res. 82: 3913–3920.

    Google Scholar 

  • Hearn, P. & Yotsukura, N., 1980. The fate of effluent derived phosphorus in the tidal Potomac River. In: Potomac Estuary Study, 1980 Fiscal year Annual Report, U.S. Geological Survey, Reston, Virginia, pp. 142–151.

    Google Scholar 

  • Hetling, L. J. & O'Connel, R. L., 1966. A study of tidal dispersion in the Potomac River. Wat. Resourc. Res. 2: 825–841.

    Google Scholar 

  • Hingston, F. J., Atkinson, R. J., Posner, A. M. & Quirk, J. P., 1969. Specific adsorption of anions by geothite. Int. Congr. Soil Sci. Trans. (9th) 1: 669–678.

    Google Scholar 

  • Holdren, G. C. Jr. & Armstrong, D. E., 1980. Factors affecting phosphorus release from intact lake sediment cores. Envir. Sci. Technol. 14: 79–87.

    Google Scholar 

  • Kamp-Nielsen, L., 1974. Mud-water exchange of phosphate and other ions in undisturbed sediment cores and factors affecting the exchange rates. Arch. Hydrobiol. 73: 218–237.

    Google Scholar 

  • Klump, J. V. & Martens, C. S., 1981. Biogeochemical cycling in an Organic rich coastal marine basin-II. Nutrient sediment-water exchange processes. Geochim. cosmochim. Acta 45: 101–124.

    Article  Google Scholar 

  • Krom, M. D. & Berner, R. A., 1980a. The diffusion coefficients of sulfate, ammonium, and phosphate ions in anoxic marine sediments. Limnol. Oceanogr. 25: 327–337.

    Google Scholar 

  • Krom, M. D. & Berner, R. A., 1980b. Adsorption of phosphate in anoxic marine sediments. Limnol. Oceanogr. 25: 797–806.

    Google Scholar 

  • Li, V. H. & Gregory, S., 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochim. cosmochim. Acta 38: 703–714.

    Article  Google Scholar 

  • Martens, C. S. & Klump, J. V., 1980. Biogeochemical cycling in Cape Lookout bight — I. Methane sediment-water exchange processes. Geochim. cosmochim. Acta 44: 471–490.

    Article  Google Scholar 

  • Matisoff, G., 1978. Early diagenesis of Chesapeake Bay sediment: a time series study of temperature, chloride, and silica. Ph. D. Thesis, Johns Hopkins University, Baltimore. 167 pp.

    Google Scholar 

  • Mullin, J. B. & Riley, J. P., 1955. Colorimetric determination of silicate with special reference to sea and natural waters. Analyt. chim. Acta 12: 162–176.

    Article  Google Scholar 

  • Murphy, J. & Riley, J. P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analyt. chim. Acta 27: 31–36.

    Article  Google Scholar 

  • Nixon, S. W., 1981. Remineralization and nutrient cycling in coastal marine ecosystems. In: Neilson, B. & Cronin, L. E. (Eds.) Nutrient Enrichment in Estuaries, pp. 111–138. Humana Press, Clifton, N.J.

    Google Scholar 

  • Nixon, S. W., Kelley, J. R., Furnas, B. N., Oviatt, C. A. & Hale, S. S., 1980. Phosphorus regeneration and the metabolism of coastal marine bottom communities. In: Tenore, K. B. & Coull, B. C. (Eds.) Benthic Dynamics. Belle W. Baruch Library in Marine Science No. 11, p. 219–242.

  • Officer, C. B., 1980. Box models revisited. In: Hamilton, P. & Macdonald, K. B. (eds.) Estuarine and Wetland Processes, pp. 65–114. Plenum Press, New York.

    Google Scholar 

  • Plummer, L. N., Jones, D. F. & Truesdell, A. H., 1976. WATEQF — a FORTRAN IV version of WATEQ, a computer program for calculating chemical equilibrium of natural wates. U.S. Geological Survey Water Resources Investigations 76–13. 61 pp.

  • Reebufgh, W. S., 1967. An improved interstitial water sampler. Limnol. Oceanogr. 12: 163–165.

    Google Scholar 

  • Robbins, J. A., McCall, P. L., Fisher, B. J. & Krezoski, J. R., 1979. Effect of deposit feeders on migration of 137CS in lake sediments. Earth Planet. Sci. Lett. 42: 277–287.

    Article  Google Scholar 

  • Scott, D. M., Mazurkiewicz, M. & Leeman, P., 1976. The long-term monitoring of ventilation rhythms of the polychaetous annelid ‘Nereis virens’ Sars. Comp. Biochem. Physiol. 53A; 65–68.

    Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801.

    Google Scholar 

  • Strickland, J. D. H. & Parsons, T. R., 1972. A Manual of Seawater Analysis, 2nd ed Fisheries Research Board of Canada Bulletin 167: 310 pp.

  • Taft, J. L., Taylor, W. R., Hartwig, E. O. & Loftus, R., 1980. Seasonal oxygen depletion in Chesapeake Bay. Estuaries 3: 242–247.

    Google Scholar 

  • Theis, T. L. & McCabe, P. J., 1978. Phosphorus dynamics in hypereutrophic lake sediments. Wat. Res. 12: 677–685.

    Article  Google Scholar 

  • Williams, J. D. H., Murphy, T. P. & Mayer, T., 1976. Rates of accumulation and phosphorus forms in Lake Erie sediments. J. Fish. Res. Bd Can. 33: 430–439.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callender, E. Benthic phosphorus regeneration in the Potomac River Estuary. Hydrobiologia 91, 431–446 (1982). https://doi.org/10.1007/PL00020033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00020033

Keywords

Navigation