Skip to main content
Log in

Heavy quark impact factor in k T -factorization

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present the calculation of the finite part of the heavy quark impact factor at next-to-leading logarithmic accuracy in a form suitable for phenomenological studies such as the calculation of the cross-section for single bottom quark production at the LHC within the k T -factorization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Lipatov, Reggeization of the vector meson and the vacuum singularity in nonabelian gauge theories, Sov. J. Nucl. Phys. 23 (1976) 338 [INSPIRE].

    Google Scholar 

  2. V.S. Fadin, E. Kuraev and L. Lipatov, On the Pomeranchuk singularity in asymptotically free theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].

    Article  ADS  Google Scholar 

  3. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [Erratum ibid. 45 (1977) 199] [INSPIRE].

    ADS  Google Scholar 

  4. E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. I. Balitsky and L. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].

    Google Scholar 

  6. V.S. Fadin and L. Lipatov, BFKL Pomeron in the next-to-leading approximation, Phys. Lett. B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Ciafaloni and G. Camici, Energy scale(s) and next-to-leading BFKL equation, Phys. Lett. B 430 (1998) 349 [hep-ph/9803389] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Catani, M. Ciafaloni and F. Hautmann, Gluon contributions to small x heavy flavor production, Phys. Lett. B 242 (1990) 97 [INSPIRE].

    Article  ADS  Google Scholar 

  9. S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy flavor production, Nucl. Phys. B 366 (1991) 135 [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Catani and F. Hautmann, High-energy factorization and small x deep inelastic scattering beyond leading order, Nucl. Phys. B 427 (1994) 475 [hep-ph/9405388] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G. Salam, A resummation of large subleading corrections at small x, JHEP 07 (1998) 019 [hep-ph/9806482] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Ciafaloni and D. Colferai, The BFKL equation at next-to-leading level and beyond, Phys. Lett. B 452 (1999) 372 [hep-ph/9812366] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Ciafaloni, D. Colferai and G. Salam, Renormalization group improved small x equation, Phys. Rev. D 60 (1999) 114036 [hep-ph/9905566] [INSPIRE].

    ADS  Google Scholar 

  14. M. Ciafaloni, D. Colferai, G. Salam and A. Stasto, Renormalization group improved small x Greens function, Phys. Rev. D 68 (2003) 114003 [hep-ph/0307188] [INSPIRE].

    ADS  Google Scholar 

  15. D. Ross, The Effect of higher order corrections to the BFKL equation on the perturbative Pomeron, Phys. Lett. B 431 (1998) 161 [hep-ph/9804332] [INSPIRE].

    Article  ADS  Google Scholar 

  16. Yu.V. Kovchegov and A.H. Mueller, Running coupling effects in BFKL evolution, Phys. Lett. B 439 (1998) 423 [hep-ph/9805208] [INSPIRE].

  17. J. Blumlein, V. Ravindran, W. van Neerven and A. Vogt, The unpolarized gluon anomalous dimension at small x, hep-ph/9806368 [INSPIRE].

  18. N. Armesto, J. Bartels and M. Braun, On the second order corrections to the hard Pomeron and the running coupling, Phys. Lett. B 442 (1998) 459 [hep-ph/9808340] [INSPIRE].

    Article  ADS  Google Scholar 

  19. R.S. Thorne, NLO BFKL equation, running coupling and renormalization scales, Phys. Rev. D 60 (1999) 054031 [hep-ph/9901331] [INSPIRE].

    ADS  Google Scholar 

  20. S.J. Brodsky, V.S. Fadin, V.T. Kim, L.N. Lipatov and G.B. Pivovarov, The QCD Pomeron with optimal renormalization, JETP Lett. 70 (1999) 155 [hep-ph/9901229] [INSPIRE].

    Article  ADS  Google Scholar 

  21. C.R. Schmidt, Rapidity separation dependence and the large next-to-leading corrections to the BFKL equation, Phys. Rev. D 60 (1999) 074003 [hep-ph/9901397] [INSPIRE].

    ADS  Google Scholar 

  22. J.R. Forshaw, D. Ross and A. Sabio Vera, Rapidity veto effects in the NLO BFKL equation, Phys. Lett. B 455 (1999) 273 [hep-ph/9903390] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Altarelli, R.D. Ball and S. Forte, Resummation of singlet parton evolution at small x, Nucl. Phys. B 575 (2000) 313 [hep-ph/9911273] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J.R. Andersen and A. Sabio Vera, Solving the BFKL equation in the next-to-leading approximation, Phys. Lett. B 567 (2003) 116 [hep-ph/0305236] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. G. Chachamis, A. Sabio Vera and C. Salas, Bootstrap and momentum transfer dependence in small x evolution equations, Phys. Rev. D 87 (2013) 016007 [arXiv:1211.6332] [INSPIRE].

    ADS  Google Scholar 

  26. M.T. Grisaru, H.J. Schnitzer and H-S. Tsao, Reggeization of Yang-Mills gauge mesons in theories with a spontaneously broken symmetry, Phys. Lett. 30 (1973) 811.

    Article  Google Scholar 

  27. M.T. Grisaru, H.J. Schnitzer and H-S. Tsao, Reggeization of elementary particles in renormalizable gauge theories: vectors and spinors, Phys. Rev. D 8 (1973) 4498.

    ADS  Google Scholar 

  28. V.S. Fadin, R. Fiore and M. Kotsky, Gluon Regge trajectory in the two loop approximation, Phys. Lett. B 387 (1996) 593+ [hep-ph/9605357] [INSPIRE].

    Article  ADS  Google Scholar 

  29. V.S. Fadin, Regge trajectory of a gluon in the two loop approximation, Pisma Zh. Eksp. Teor. Fiz. 61 (1995) 342.

    Google Scholar 

  30. V.S. Fadin, R. Fiore and A. Quartarolo, Reggeization of quark quark scattering amplitude in QCD, Phys. Rev. D 53 (1996) 2729 [hep-ph/9506432] [INSPIRE].

    ADS  Google Scholar 

  31. M.I. Kotsky and V.S. Fadin, Reggeization of the amplitude of gluon-gluon scattering, Yad. Fiz. 59 (1996) 1.

    Google Scholar 

  32. V.S. Fadin, M. Kotsky and R. Fiore, Gluon reggeization in QCD in the next-to-leading order, Phys. Lett. B 359 (1995) 181 [INSPIRE].

    Article  ADS  Google Scholar 

  33. V. Del Duca and E.N. Glover, The high-energy limit of QCD at two loops, JHEP 10 (2001) 035 [hep-ph/0109028] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Chachamis, M. Hentschinski, J. Madrigal Martinez and A. Sabio Vera, Quark contribution to the gluon Regge trajectory at NLO from the high energy effective action, Nucl. Phys. B 861 (2012) 133 [arXiv:1202.0649] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. G. Chachamis, M. Hentschinski, J. Madrigal Martinez and A. Sabio Vera, Gluon Regge trajectory at two loops from Lipatovs high energy effective action, Nucl. Phys. B 876 (2013) 453 [arXiv:1307.2591] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. V.S. Fadin, R. Fiore, M. Kotsky and A. Papa, The gluon impact factors, Phys. Rev. D 61 (2000) 094005 [hep-ph/9908264] [INSPIRE]

    ADS  Google Scholar 

  37. V.S. Fadin, R. Fiore, M. Kotsky and A. Papa, The quark impact factors, Phys. Rev. D 61 (2000) 094006 [hep-ph/9908265] [INSPIRE].

    ADS  Google Scholar 

  38. J. Bartels, S. Gieseke and C. Qiao, The → q \( \overline{q} \)) Reggeon vertex in next-to-leading order QCD, Phys. Rev. D 63 (2001) 056014 [Erratum ibid. D 65 (2002) 079902] [hep-ph/0009102] [INSPIRE].

    ADS  Google Scholar 

  39. V.S. Fadin, D.Y. Ivanov and M. Kotsky, Photon Reggeon interaction vertices in the NLA, Phys. Atom. Nucl. 65 (2002) 1513 [Yad. Fiz. 65 (2002) 1551] [hep-ph/0106099] [INSPIRE].

    Article  ADS  Google Scholar 

  40. J. Bartels, D. Colferai and G. Vacca, The NLO jet vertex for Mueller-Navelet and forward jets: the quark part, Eur. Phys. J. C 24 (2002) 83 [hep-ph/0112283] [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. Bartels, S. Gieseke and A. Kyrieleis, The process γ(L) + q → (q \( \overline{q} \) g) + q: real corrections to the virtual photon impact factor, Phys. Rev. D 65 (2002) 014006 [hep-ph/0107152] [INSPIRE].

    ADS  Google Scholar 

  42. J. Bartels, D. Colferai, S. Gieseke and A. Kyrieleis, NLO corrections to the photon impact factor: combining real and virtual corrections, Phys. Rev. D 66 (2002) 094017 [hep-ph/0208130] [INSPIRE].

    ADS  Google Scholar 

  43. V. Fadin, D.Y. Ivanov and M. Kotsky, On the calculation of the NLO virtual photon impact factor, Nucl. Phys. B 658 (2003) 156 [hep-ph/0210406] [INSPIRE].

    Article  ADS  Google Scholar 

  44. G. Chachamis and J. Bartels, NLO photon impact factor: present status and outlook, PoS (DIFF2006) 026.

  45. I. Balitsky and G.A. Chirilli, Photon impact factor and k T -factorization for DIS in the next-to-leading order, Phys. Rev. D 87 (2013) 014013 [arXiv:1207.3844] [INSPIRE].

    ADS  Google Scholar 

  46. R.D. Ball and S. Forte, Asymptotically free partons at high-energy, Phys. Lett. B 405 (1997) 317 [hep-ph/9703417] [INSPIRE].

    Article  ADS  Google Scholar 

  47. R.D. Ball and S. Forte, The small x behavior of Altarelli-Parisi splitting functions, Phys. Lett. B 465 (1999) 271 [hep-ph/9906222] [INSPIRE].

    Article  ADS  Google Scholar 

  48. A. Vogt, S. Moch and J. Vermaseren, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. G. Altarelli, R.D. Ball and S. Forte, Perturbatively stable resummed small x evolution kernels, Nucl. Phys. B 742 (2006) 1 [hep-ph/0512237] [INSPIRE].

    Article  ADS  Google Scholar 

  50. C. White and R. Thorne, A global fit to scattering data with NLL BFKL resummations, Phys. Rev. D 75 (2007) 034005 [hep-ph/0611204] [INSPIRE].

    ADS  Google Scholar 

  51. G. Altarelli, R.D. Ball and S. Forte, Small x resummation with quarks: deep-inelastic scattering, Nucl. Phys. B 799 (2008) 199 [arXiv:0802.0032] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Hentschinski, A. Sabio Vera and C. Salas, Description of F 2 and F L at small x using a collinearly-improved BFKL resummation, Phys. Rev. D 87 (2013) 076005 [arXiv:1301.5283] [INSPIRE].

    ADS  Google Scholar 

  53. S. Brodsky, F. Hautmann and D. Soper, Probing the QCD Pomeron in e + e collisions, Phys. Rev. Lett. 78 (1997) 803 [Erratum ibid. 79 (1997) 3544] [hep-ph/9610260] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. Brodsky, F. Hautmann and D. Soper, Virtual photon scattering at high-energies as a probe of the short distance Pomeron, Phys. Rev. D 56 (1997) 6957 [hep-ph/9706427] [INSPIRE].

    ADS  Google Scholar 

  55. J. Bartels, A. De Roeck and H. Lotter, The γγ total cross-section and the BFKL Pomeron at e + e colliders, Phys. Lett. B 389 (1996) 742 [hep-ph/9608401] [INSPIRE].

    ADS  Google Scholar 

  56. R. Ball and R.K. Ellis, Heavy quark production at high-energy, JHEP 05 (2001) 053 [hep-ph/0101199] [INSPIRE].

    Article  ADS  Google Scholar 

  57. M. Deak and F. Schwennsen, Z and W ± production associated with quark-antiquark pair in k T -factorization at the LHC, JHEP 09 (2008) 035 [arXiv:0805.3763] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Marzani and R.D. Ball, High energy resummation of Drell-Yan processes, Nucl. Phys. B 814 (2009) 246 [arXiv:0812.3602] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  59. F. Hautmann, Heavy top limit and double logarithmic contributions to Higgs production at m(H)2 /s much less than 1, Phys. Lett. B 535 (2002) 159 [hep-ph/0203140] [INSPIRE].

    Article  ADS  Google Scholar 

  60. D. Colferai, F. Schwennsen, L. Szymanowski and S. Wallon, Mueller Navelet jets at LHC-complete NLL BFKL calculation, JHEP 12 (2010) 026 [arXiv:1002.1365] [INSPIRE].

    Article  ADS  Google Scholar 

  61. L.H. Orr and W.J. Stirling, Dijet production at hadron hadron colliders in the BFKL approach, Phys. Rev. D 56 (1997) 5875 [hep-ph/9706529] [INSPIRE].

    ADS  Google Scholar 

  62. A. de Roeck and H. Jung, HERA and the LHC: workshop series on the implications of HERA for LHC physics, DESY-PROC-2009-02 (2009) [arXiv:0903.3861].

  63. A. Sabio Vera and F. Schwennsen, Azimuthal decorrelation of forward jets in deep inelastic scattering, Phys. Rev. D 77 (2008) 014001 [arXiv:0708.0549] [INSPIRE].

    ADS  Google Scholar 

  64. B. Ducloué, L. Szymanowski and S. Wallon, Evidence for high-energy resummation effects in Mueller-Navelet jets at the LHC, arXiv:1309.3229 [INSPIRE].

  65. M. Ciafaloni and D. Colferai, K factorization and impact factors at next-to-leading level, Nucl. Phys. B 538 (1999) 187 [hep-ph/9806350] [INSPIRE].

    Article  ADS  Google Scholar 

  66. A.H. Mueller and H. Navelet, An inclusive minijet cross-section and the bare Pomeron in QCD, Nucl. Phys. B 282 (1987) 727 [INSPIRE].

    Article  ADS  Google Scholar 

  67. A. Sabio Vera and F. Schwennsen, The azimuthal decorrelation of jets widely separated in rapidity as a test of the BFKL kernel, Nucl. Phys. B 776 (2007) 170 [hep-ph/0702158] [INSPIRE].

    Article  ADS  Google Scholar 

  68. J. Kwiecinski, A.D. Martin, L. Motyka and J. Outhwaite, Azimuthal decorrelation of forward and backward jets at the Tevatron, Phys. Lett. B 514 (2001) 355 [hep-ph/0105039] [INSPIRE].

    Article  ADS  Google Scholar 

  69. ATLAS collaboration, Commissioning of the ATLAS high-performance b-tagging algorithms in the 7 TeV collision data, ATLAS-CONF-2011-102 (2011).

  70. CMS collaboration, Identification of b-quark jets with the CMS experiment, 2013 JINST 8 P04013 [arXiv:1211.4462] [INSPIRE].

  71. LHCb collaboration, LHCb reoptimized detector design and performance: technical design report, CERN-LHCC-2003-030 (2003).

  72. M. Ciafaloni and G. Rodrigo, Heavy quark impact factor at next-to-leading level, JHEP 05 (2000) 042 [hep-ph/0004033] [INSPIRE].

    Article  ADS  Google Scholar 

  73. G. Rodrigo and M. Ciafaloni, QCD factorization with heavy quarks, Nucl. Phys. Proc. Suppl. 99A (2001) 200 [hep-ph/0010216] [INSPIRE].

    Article  ADS  Google Scholar 

  74. G. Rodrigo and A. Santamaria, QCD matching conditions at thresholds, Phys. Lett. B 313 (1993) 441 [hep-ph/9305305] [INSPIRE].

    Article  ADS  Google Scholar 

  75. G. Rodrigo, A. Pich and A. Santamaria, α s (m Z ) from τ decays with matching conditions at three loops, Phys. Lett. B 424 (1998) 367 [hep-ph/9707474] [INSPIRE].

    Article  ADS  Google Scholar 

  76. S. Catani, B. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].

    Article  ADS  Google Scholar 

  77. Y.L. Dokshitzer, V.A. Khoze and S. Troian, Specific features of heavy quark production. LPHD approach to heavy particle spectra, Phys. Rev. D 53 (1996) 89 [hep-ph/9506425] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Deak.

Additional information

ArXiv ePrint: 1310.6611

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chachamis, G., Deak, M. & Rodrigo, G. Heavy quark impact factor in k T -factorization. J. High Energ. Phys. 2013, 66 (2013). https://doi.org/10.1007/JHEP12(2013)066

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)066

Keywords

Navigation