Skip to main content
Log in

Plasma photoemission from string theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Leading ’t Hooft coupling corrections to the photoemission rate of the planar limit of a strongly-coupled \( \mathcal{N}=4 \) SYM plasma are investigated using the gauge/string duality. We consider the full \( \mathcal{O}\left( {{\alpha^{{\prime 3}}}} \right) \) type IIB string theory corrections to the supergravity action, including higher order terms with the Ramond-Ramond five-form field strength. We extend our previous results presented in [1]. Photoemission rates depend on the ’t Hooft coupling, and their curves suggest an interpolating behaviour from strong towards weak coupling regimes. Their slopes at zero light-like momentum give the electrical conductivity as a function of the ’t Hooft coupling, in full agreement with our previous results of [2]. Furthermore, we also study the effect of corrections beyond the large N limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Hassanain and M. Schvellinger, Diagnostics of plasma photoemission at strong coupling, Phys. Rev. D 85 (2012) 086007 [arXiv:1110.0526] [INSPIRE].

    ADS  Google Scholar 

  2. B. Hassanain and M. Schvellinger, Plasma conductivity at finite coupling, JHEP 01 (2012) 114 [arXiv:1108.6306] [INSPIRE].

    Article  ADS  Google Scholar 

  3. P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 1. Leading log results, JHEP 11 (2000) 001 [hep-ph/0010177] [INSPIRE].

    Article  ADS  Google Scholar 

  4. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from ultrarelativistic plasmas, JHEP 11 (2001) 057 [hep-ph/0109064] [INSPIRE].

    Article  ADS  Google Scholar 

  5. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from quark gluon plasma: complete leading order results, JHEP 12 (2001) 009 [hep-ph/0111107] [INSPIRE].

    Article  ADS  Google Scholar 

  6. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].

    Article  ADS  Google Scholar 

  7. P.B. Arnold, G.D. Moore and L.G. Yaffe, Effective kinetic theory for high temperature gauge theories, JHEP 01 (2003) 030 [hep-ph/0209353] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 2. Beyond leading log, JHEP 05 (2003) 051 [hep-ph/0302165] [INSPIRE].

    Article  ADS  Google Scholar 

  9. E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog. Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Gyulassy and L. McLerran, New forms of QCD matter discovered at RHIC, Nucl. Phys. A 750 (2005) 30 [nucl-th/0405013] [INSPIRE].

    ADS  Google Scholar 

  11. B. Müller, From quark-gluon plasma to the perfect liquid, Acta Phys. Polon. B 38 (2007) 3705 [arXiv:0710.3366] [INSPIRE].

    Google Scholar 

  12. J. Casalderrey-Solana and C.A. Salgado, Introductory lectures on jet quenching in heavy ion collisions, Acta Phys. Polon. B 38 (2007) 3731 [arXiv:0712.3443] [INSPIRE].

    ADS  Google Scholar 

  13. E. Shuryak, Physics of strongly coupled quark-gluon plasma, Prog. Part. Nucl. Phys. 62 (2009) 48 [arXiv:0807.3033] [INSPIRE].

    Article  ADS  Google Scholar 

  14. U.W. Heinz, The strongly coupled quark-gluon plasma created at RHIC, J. Phys. A 42 (2009) 214003 [arXiv:0810.5529] [INSPIRE].

    ADS  Google Scholar 

  15. E. Iancu, Partons and jets in a strongly-coupled plasma from AdS/CFT, Acta Phys. Polon. B 39 (2008) 3213 [arXiv:0812.0500] [INSPIRE].

    ADS  Google Scholar 

  16. ALICE collaboration, J. Schukraft, First results from the ALICE experiment at the LHC, Nucl. Phys. A 862-863 (2011) 78 [arXiv:1103.3474] [INSPIRE].

    Google Scholar 

  17. N. Armesto et al., Heavy ion collisions at the LHClast call for predictions, J. Phys. G 35 (2008) 054001 [arXiv:0711.0974] [INSPIRE].

    Google Scholar 

  18. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  19. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  21. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].

  22. S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton production in supersymmetric Yang-Mills plasma, JHEP 12 (2006) 015 [hep-th/0607237] [INSPIRE].

    Article  Google Scholar 

  23. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. M.B. Green and C. Stahn, D3-branes on the Coulomb branch and instantons, JHEP 09 (2003) 052 [hep-th/0308061] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S. de Haro, A. Sinkovics and K. Skenderis, On a supersymmetric completion of the R 4 term in IIB supergravity, Phys. Rev. D 67 (2003) 084010 [hep-th/0210080] [INSPIRE].

    ADS  Google Scholar 

  27. M.F. Paulos, Higher derivative terms including the Ramond-Ramond five-form, JHEP 10 (2008) 047 [arXiv:0804.0763] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [INSPIRE].

    ADS  Google Scholar 

  29. M.B. Green and M. Gutperle, Effects of D instantons, Nucl. Phys. B 498 (1997) 195 [hep-th/9701093] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. T. Banks and M.B. Green, Nonperturbative effects in AdS 5 × S 5 string theory and D = 4 SUSY Yang-Mills, JHEP 05 (1998) 002 [hep-th/9804170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. M.B. Green, K. Peeters and C. Stahn, Superfield integrals in high dimensions, JHEP 08 (2005) 093 [hep-th/0506161] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. R. Argurio, Brane physics in M-theory, hep-th/9807171 [INSPIRE].

  33. M. Cvetič et al., Embedding AdS black holes in ten and eleven dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. J. Pawelczyk and S. Theisen, AdS 5 × S 5 black hole metric at O(α ′3), JHEP 09 (1998) 010 [hep-th/9808126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. S. de Haro, A. Sinkovics and K. Skenderis, On α corrections to D-brane solutions, Phys. Rev. D 68 (2003) 066001 [hep-th/0302136] [INSPIRE].

    ADS  Google Scholar 

  38. K. Peeters and A. Westerberg, The Ramond-Ramond sector of string theory beyond leading order, Class. Quant. Grav. 21 (2004) 1643 [hep-th/0307298] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Buchel, Resolving disagreement for η/s in a CFT plasma at finite coupling, Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Sinha and R.C. Myers, The viscosity bound in string theory, Nucl. Phys. A 830 (2009) 295C [arXiv:0907.4798] [INSPIRE].

    ADS  Google Scholar 

  43. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. B. Hassanain and M. Schvellinger, Towardst Hooft parameter corrections to charge transport in strongly-coupled plasma, JHEP 10 (2010) 068 [arXiv:1006.5480] [INSPIRE].

    Article  ADS  Google Scholar 

  45. B. Hassanain and M. Schvellinger, Holographic current correlators at finite coupling and scattering off a supersymmetric plasma, JHEP 04 (2010) 012 [arXiv:0912.4704] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Ritz and J. Ward, Weyl corrections to holographic conductivity, Phys. Rev. D 79 (2009) 066003 [arXiv:0811.4195] [INSPIRE].

    ADS  Google Scholar 

  47. R.C. Myers, M.F. Paulos and A. Sinha, Holographic hydrodynamics with a chemical potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on η/s at finite chemical potential, Phys. Rev. D 80 (2009) 025002 [arXiv:0903.3244] [INSPIRE].

    ADS  Google Scholar 

  49. G. Aarts, C. Allton, J. Foley, S. Hands and S. Kim, Spectral functions at small energies and the electrical conductivity in hot, quenched lattice QCD, Phys. Rev. Lett. 99 (2007) 022002 [hep-lat/0703008] [INSPIRE].

    Article  ADS  Google Scholar 

  50. H.-T. Ding et al., Thermal dilepton rate and electrical conductivity: an analysis of vector current correlation functions in quenched lattice QCD, Phys. Rev. D 83 (2011) 034504 [arXiv:1012.4963] [INSPIRE].

    ADS  Google Scholar 

  51. D. Steineder, S.A. Stricker and A. Vuorinen, Thermalization at intermediate coupling, arXiv:1209.0291 [INSPIRE].

  52. R. Baier, S.A. Stricker, O. Taanila and A. Vuorinen, Production of prompt photons: holographic duality and thermalization, Phys. Rev. D 86 (2012) 081901 [arXiv:1207.1116] [INSPIRE].

    ADS  Google Scholar 

  53. R. Baier, S.A. Stricker, O. Taanila and A. Vuorinen, Holographic dilepton production in a thermalizing plasma, JHEP 07 (2012) 094 [arXiv:1205.2998] [INSPIRE].

    Article  ADS  Google Scholar 

  54. U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP 02 (2000) 039 [hep-th/9912209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. S. Lin and E. Shuryak, Toward the AdS/CFT gravity dual for high energy collisions. 3. Gravitationally collapsing shell and quasiequilibrium, Phys. Rev. D 78 (2008) 125018 [arXiv:0808.0910] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

    Article  ADS  Google Scholar 

  57. V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

    ADS  Google Scholar 

  58. T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].

    Article  ADS  Google Scholar 

  59. D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP 07 (2012) 096 [arXiv:1205.1548] [INSPIRE].

    Article  ADS  Google Scholar 

  60. J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge theory, hep-th/0003136 [INSPIRE].

  61. K. Pilch and N.P. Warner, N = 1 supersymmetric renormalization group flows from IIB supergravity, Adv. Theor. Math. Phys. 4 (2002) 627 [hep-th/0006066] [INSPIRE].

    MathSciNet  Google Scholar 

  62. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χ SB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. J.M. Maldacena and C. Núñez, Towards the large-N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavor, JHEP 07 (2003) 049 [hep-th/0304032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. D. Mateos and L. Patino, Bright branes for strongly coupled plasmas, JHEP 11 (2007) 025 [arXiv:0709.2168] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  68. K. Peeters, J. Sonnenschein and M. Zamaklar, Holographic melting and related properties of mesons in a quark gluon plasma, Phys. Rev. D 74 (2006) 106008 [hep-th/0606195] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schvellinger.

Additional information

ArXiv ePrint: 1209.0427

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassanain, B., Schvellinger, M. Plasma photoemission from string theory. J. High Energ. Phys. 2012, 95 (2012). https://doi.org/10.1007/JHEP12(2012)095

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2012)095

Keywords

Navigation