Skip to main content
Log in

Anomaly and a QCD-like phase diagram with massive bosonic baryons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study a strongly coupled Z 2 lattice gauge theory with two flavors of quarks, invariant under an exact SU(2) × SU(2) × U A (1) × U B (1) symmetry which is the same as in QCD with two flavors of quarks without an anomaly. The model also contains a coupling that can be used to break the U A (1) symmetry and thus mimic the QCD anomaly. At low temperatures T and small baryon chemical potential μ B the model contains massless pions and massive bosonic baryons similar to QCD with an even number of colors. In this work we study the Tμ B phase diagram of the model and show that it contains three phases: (1) A chirally broken phase at low T and μ B , (2) a chirally symmetric baryon superfluid phase at low T and high μ B , and (3) a symmetric phase at high T. We find that the nature of the finite temperature chiral phase transition and in particular the location of the tricritical point that seperates the first order line from the second order line is affected significantly by the anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. Alford, A. Schmitt, K. Rajagopal and T. Schafer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [SPIRES].

    Article  ADS  Google Scholar 

  2. P. Braun-Munzinger and J. Stachel, The quest for the quark-gluon plasma, Nature 448 (2007) 302 [SPIRES].

    Article  ADS  Google Scholar 

  3. STAR collaboration, M.M. Aggarwal et al., An experimental exploration of the QCD phase diagram: the search for the critical point and the onset of de-confinement, arXiv:1007.2613 [SPIRES].

  4. A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov and J.J.M. Verbaarschot, On the phase diagram of QCD, Phys. Rev. D 58 (1998) 096007 [hep-ph/9804290] [SPIRES].

    ADS  Google Scholar 

  5. J. Berges and K. Rajagopal, Color superconductivity and chiral symmetry restoration at nonzero baryon density and temperature, Nucl. Phys. B 538 (1999) 215 [hep-ph/9804233] [SPIRES].

    Article  ADS  Google Scholar 

  6. A. Bazavov et al., Equation of state and QCD transition at finite temperature, Phys. Rev. D 80 (2009) 014504 [arXiv:0903.4379] [SPIRES].

    ADS  Google Scholar 

  7. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [SPIRES].

    Article  ADS  Google Scholar 

  8. Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, The QCD transition temperature: Results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [SPIRES].

    ADS  Google Scholar 

  9. Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP 06 (2009) 088 [arXiv:0903.4155] [SPIRES].

    Article  ADS  Google Scholar 

  10. Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [SPIRES].

    Article  ADS  Google Scholar 

  11. O. P hilipsen, Status of lattice studies of the QCD phase diagram, Prog. Theor. Phys. Suppl. 174 (2008) 206 [arXiv:0808.0672] [SPIRES].

    Article  ADS  Google Scholar 

  12. P. de Forcrand, Simulating QCD at finite density, PoS(LAT2009)010 [arXiv:1005.0539] [SPIRES].

  13. M.P. Lombardo, K. Splittorff and J.J.M. Verbaarschot, Lattice QCD and dense quark matter, arXiv:0912.4410 [SPIRES].

  14. R.V. Gavai and S. Gupta, QCD at finite chemical potential with six time slices, Phys. Rev. D 78 (2008) 114503 [arXiv:0806.2233] [SPIRES].

    ADS  Google Scholar 

  15. M.A. Stephanov, QCD phase diagram and the critical point, Prog. Theor. Phys. Suppl. 153 (2004) 139 [hep-ph/0402115] [SPIRES].

    Article  ADS  Google Scholar 

  16. M. Alford, J.A. Bowers and K. Rajagopal, Crystalline color superconductivity, Phys. Rev. D 63 (2001) 074016 [SPIRES].

    ADS  Google Scholar 

  17. L. McLerran and R.D. Pisarski, Phases of cold, dense quarks at large-N c , Nucl. Phys. A 796 (2007) 83 [arXiv:0706.2191] [SPIRES].

    ADS  Google Scholar 

  18. A.D. Jackson and J.J.M. Verbaarschot, A random matrix model for chiral symmetry breaking, Phys. Rev. D 53 (1996) 7223 [hep-ph/9509324] [SPIRES].

    ADS  Google Scholar 

  19. T. Sano, H. Fujii and M. Ohtani, UA(1) breaking and phase transition in chiral random matrix model, Phys. Rev. D 80 (2009) 034007 [arXiv:0904.1860] [SPIRES].

    ADS  Google Scholar 

  20. M.A. Stephanov, QCD critical point and complex chemical potential singularities, Phys. Rev. D 73 (2006) 094508 [hep-lat/0603014] [SPIRES].

    ADS  Google Scholar 

  21. S. Hands and D.N. Walters, Evidence for BCS diquark condensation in the 3 + 1D lattice NJLS model, Phys. Lett. B 548 (2002) 196 [hep-lat/0209140] [SPIRES].

    ADS  Google Scholar 

  22. M. Buballa, NJLS model analysis of quark matter at large density, Phys. Rept. 407 (2005) 205 [hep-ph/0402234] [SPIRES].

    Article  ADS  Google Scholar 

  23. G.-f. Sun, L. He and P. Zhuang, BEC-BCS crossover in the Nambu–Jona-Lasinio model of QCD, Phys. Rev. D 75 (2007) 096004 [hep-ph/0703159] [SPIRES].

    ADS  Google Scholar 

  24. K. Fukushima, Phase diagrams in the three-flavor Nambu–Jona-Lasinio model with the Polyakov loop, Phys. Rev. D 77 (2008) 114028 [arXiv:0803.3318] [SPIRES].

    ADS  Google Scholar 

  25. C. Ratti, M.A. Thaler and W. Weise, Phases of QCD: lattice thermodynamics and a field theoretical model, Phys. Rev. D 73 (2006) 014019 [hep-ph/0506234] [SPIRES].

    ADS  Google Scholar 

  26. B.-J. Schaefer, J.M. Pawlowski and J. Wambach, The phase structure of the Polyakov-quark-meson model, Phys. Rev. D 76 (2007) 074023 [arXiv:0704.3234] [SPIRES].

    ADS  Google Scholar 

  27. H. Mao, J. Jin and M. Huang, Phase diagram and thermodynamics of the Polyakov linear σ-model with three quark flavors, J. Phys. G 37 (2010) 035001 [arXiv:0906.1324] [SPIRES].

    ADS  Google Scholar 

  28. M. Cristoforetti, T. Hell and W. Weise, Monte-Carlo simulations of QCD thermodynamics in the PNJL model, J. Phys. Conf. Ser. 168 (2009) 012021 [arXiv:0901.4673] [SPIRES].

    Article  ADS  Google Scholar 

  29. B.-J. Schaefer and M. Wagner, The three-flavor chiral phase structure in hot and dense QCD matter, Phys. Rev. D 79 (2009) 014018 [arXiv:0808.1491] [SPIRES].

    ADS  Google Scholar 

  30. E.S. Bowman and J.I. Kapusta, Critical points in the linear σ-model with quarks, Phys. Rev. C 79 (2009) 015202 [arXiv:0810.0042] [SPIRES].

    ADS  Google Scholar 

  31. Y. Nishida, K. Fukushima and T. Hatsuda, Thermodynamics of strong coupling 2-color QCD with chiral and diquark condensates, Phys. Rept. 398 (2004) 281 [hep-ph/0306066] [SPIRES].

    Article  ADS  Google Scholar 

  32. N. Kawamoto, K. Miura, A. Ohnishi and T. Ohnuma, Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3), Phys. Rev. D 75 (2007) 014502 [hep-lat/0512023] [SPIRES].

    ADS  Google Scholar 

  33. J.B. Kogut, M.A. Stephanov and D. Toublan, On two-color QCD with baryon chemical potential, Phys. Lett. B 464 (1999) 183 [hep-ph/9906346] [SPIRES].

    ADS  Google Scholar 

  34. J.B. Kogut, D. Toublan and D.K. Sinclair, Diquark condensation at nonzero chemical potential and temperature, Phys. Lett. B 514 (2001) 77 [hep-lat/0104010] [SPIRES].

    ADS  Google Scholar 

  35. J.B. Kogut, D.K. Sinclair, S.J. Hands and S.E. Morrison, Two-colour QCD at non-zero quark-number density, Phys. Rev. D 64 (2001) 094505 [hep-lat/0105026] [SPIRES].

    ADS  Google Scholar 

  36. J.B. Kogut, D. Toublan and D.K. Sinclair, The phase diagram of four flavor SU(2) lattice gauge theory at nonzero chemical potential and temperature, Nucl. Phys. B 642 (2002) 181 [hep-lat/0205019] [SPIRES].

    Article  ADS  Google Scholar 

  37. S. Chandrasekharan and F.-J. Jiang, Phase-diagram of two-color lattice QCD in the chiral limit, Phys. Rev. D 74 (2006) 014506 [hep-lat/0602031] [SPIRES].

    ADS  Google Scholar 

  38. J.O. Andersen and T. Brauner, Phase diagram of two-color quark matter at nonzero baryon and isospin density, Phys. Rev. D 81 (2010) 096004 [arXiv:1001.5168] [SPIRES].

    ADS  Google Scholar 

  39. J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot and A. Zhitnitsky, QCD-like theories at finite baryon density, Nucl. Phys. B 582 (2000) 477 [hep-ph/0001171] [SPIRES].

    Article  ADS  Google Scholar 

  40. T. Brauner, K. Fukushima and Y. Hidaka, Two-color quark matter: U(1) A restoration, superfluidity and quarkyonic phase, Phys. Rev. D 80 (2009) 074035 [arXiv:0907.4905] [SPIRES].

    ADS  Google Scholar 

  41. J.-W. Chen, K. Fukushima, H. Kohyama, K. Ohnishi and U. Raha, U A (1) anomaly in hot and dense QCD and the critical surface, Phys. Rev. D 80 (2009) 054012 [arXiv:0901.2407] [SPIRES].

    ADS  Google Scholar 

  42. T. Hatsuda, M. Tachibana, N. Yamamoto and G. Baym, New critical point induced by the axial anomaly in dense QCD, Phys. Rev. Lett. 97 (2006) 122001 [hep-ph/0605018] [SPIRES].

    Article  ADS  Google Scholar 

  43. N. Yamamoto, M. Tachibana, T. Hatsuda and G. Baym, Phase structure, collective modes and the axial anomaly in dense QCD, Phys. Rev. D 76 (2007) 074001 [arXiv:0704.2654] [SPIRES].

    ADS  Google Scholar 

  44. P. de Forcrand and M. Fromm, Nuclear physics from lattice QCD at strong coupling, Phys. Rev. Lett. 104 (2010) 112005 [arXiv:0907.1915] [SPIRES].

    Article  ADS  Google Scholar 

  45. S. Chandrasekharan, A new computational approach to lattice quantum field theories, PoS(LATTICE2008)003 [arXiv:0810.2419] [SPIRES].

  46. N. Prokof’ev and B. Svistunov, Worm algorithms for classical statistical models, Phys. Rev. Lett. 87 (2001) 160601 [SPIRES].

    Article  ADS  Google Scholar 

  47. O.F. Syljuasen and A.W. Sandvik, Quantum Monte Carlo with directed loops, Phys. Rev. E 66 (2002) 046701 [SPIRES].

    ADS  Google Scholar 

  48. D.H. Adams and S. Chandrasekharan, Chiral limit of strongly coupled lattice gauge theories, Nucl. Phys. B 662 (2003) 220 [hep-lat/0303003] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  49. U. Wolff, Strong coupling expansion Monte Carlo, arXiv:1009.0657 [SPIRES].

  50. S. Chandrasekharan and A.C. Mehta, Effects of the anomaly on the two-flavor QCD chiral phase transition, Phys. Rev. Lett. 99 (2007) 142004 [arXiv:0705.0617] [SPIRES].

    Article  ADS  Google Scholar 

  51. D.J. Cecile and S. Chandrasekharan, Modeling pion physics in the ϵ-regime of two-flavor QCD using strong coupling lattice QED, Phys. Rev. D 77 (2008) 014506 [arXiv:0708.0558] [SPIRES].

    ADS  Google Scholar 

  52. S. Chandrasekharan, The fermion bag approach to lattice field theories, Phys. Rev. D 82 (2010) 025007 [arXiv:0910.5736] [SPIRES].

    ADS  Google Scholar 

  53. S. Chandrasekharan and A. Li, Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions, arXiv:1008.5146 [SPIRES].

  54. A. Pelissetto and E. Vicari, Critical phenomena and renormalization-group theory, Phys. Rept. 368 (2002) 549 [cond-mat/0012164] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anyi Li.

Additional information

ArXiv ePrint: 1009.2774

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekharan, S., Li, A. Anomaly and a QCD-like phase diagram with massive bosonic baryons. J. High Energ. Phys. 2010, 21 (2010). https://doi.org/10.1007/JHEP12(2010)021

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2010)021

Keywords

Navigation