Skip to main content
Log in

New higher-derivative invariants in N = 2 supergravity and the Gauss-Bonnet term

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A new class of N = 2 locally supersymmetric higher-derivative invariants is constructed based on logarithms of conformal primary chiral superfields. They characteristically involve a coupling to \( {{\mathcal{R}}_{uv}}^2-\frac{1}{3}{{\mathcal{R}}^2} \), which equals the non-conformal part of the Gauss-Bonnet term. Upon combining one such invariant with the known supersymmetric version of the square of the Weyl tensor, one obtains the supersymmetric extension of the Gauss-Bonnet term. The construction is carried out in the context of both conformal superspace and the superconformal multiplet calculus. The new class of supersymmetric invariants resolves two open questions. The first concerns the proper identification of the 4D supersymmetric invariants that arise from dimensional reduction of the 5D mixed gauge-gravitational Chern-Simons term. The second is why the pure Gauss-Bonnet term without supersymmetric completion has reproduced the correct result in calculations of the BPS black hole entropy in certain models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Butter, N = 2 conformal superspace in four dimensions, JHEP 10 (2011) 030 [arXiv:1103.5914] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. B. de Wit and A. Van Proeyen, Potentials and symmetries of general gauged N = 2 supergravity: Yang-Mills models, Nucl. Phys. B 245 (1984) 89 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. B. de Wit, P. Lauwers and A. Van Proeyen, Lagrangians of N = 2 supergravity-matter systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].

    Article  ADS  Google Scholar 

  4. A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic superspace, Cambridge University Press, Cambridge U.K. (2001).

    Book  MATH  Google Scholar 

  5. S. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, 4D N = 2 supergravity and projective superspace, JHEP 09 (2008) 051 [arXiv:0805.4683] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. S. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, On conformal supergravity and projective superspace, JHEP 08 (2009) 023 [arXiv:0905.0063] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Henningson, Extended superspace, higher derivatives and SL(2, Z) duality, Nucl. Phys. B 458 (1996) 445 [hep-th/9507135] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. B. de Wit, M.T. Grisaru and M. Roček, Nonholomorphic corrections to the one loop N = 2 super Yang-Mills action, Phys. Lett. B 374 (1996) 297 [hep-th/9601115] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. I. Buchbinder, S. Kuzenko and A.A. Tseytlin, On low-energy effective actions in N = 2, N =4 superconformal theories in four-dimensions, Phys. Rev. D 62 (2000) 045001 [hep-th/9911221] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. A. Banin, I. Buchbinder and N. Pletnev, On low-energy effective action in N = 2 super Yang-Mills theories on non-Abelian background, Phys. Rev. D 66 (2002) 045021 [hep-th/0205034] [INSPIRE].

    ADS  Google Scholar 

  11. P.C. Argyres, A.M. Awad, G.A. Braun and F.P. Esposito, Higher derivative terms in N = 2 supersymmetric effective actions, JHEP 07 (2003) 060 [hep-th/0306118] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. B. de Wit and F. Saueressig, Off-shell N = 2 tensor supermultiplets, JHEP 09 (2006) 062 [hep-th/0606148] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  14. F. Moura, Four-dimensionalold minimalN = 2 supersymmetrization of R 4, JHEP 07 (2003) 057 [hep-th/0212271] [INSPIRE].

    Article  ADS  Google Scholar 

  15. B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings: full N = 2 superspace does not count!, JHEP 01 (2011) 007 [arXiv:1010.2150] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Chemissany, S. Ferrara, R. Kallosh and C. Shahbazi, N = 2 supergravity counterterms, off and on shell, JHEP 12 (2012) 089 [arXiv:1208.4801] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. D. Butter and S.M. Kuzenko, New higher-derivative couplings in 4D N = 2 supergravity, JHEP 03 (2011) 047 [arXiv:1012.5153] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. N. Banerjee, B. de Wit and S. Katmadas, The off-shell 4D/5D connection, JHEP 03 (2012) 061 [arXiv:1112.5371] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. K. Hanaki, K. Ohashi and Y. Tachikawa, Supersymmetric completion of an R 2 term in five-dimensional supergravity, Prog. Theor. Phys. 117 (2007) 533 [hep-th/0611329] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. A. Sen, Entropy function for heterotic black holes, JHEP 03 (2006) 008 [hep-th/0508042] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. G. Lopes Cardoso, B. de Wit and T. Mohaupt, Corrections to macroscopic supersymmetric black hole entropy, Phys. Lett. B 451 (1999) 309 [hep-th/9812082] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. G. Lopes Cardoso, B. de Wit, J. Käppeli and T. Mohaupt, Stationary BPS solutions in N =2 supergravity with R 2 interactions, JHEP 12 (2000) 019 [hep-th/0009234] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. E. Fradkin and A.A. Tseytlin, Asymptotic freedom in extended conformal supergravities, Phys. Lett. B 110 (1982) 117 [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Fradkin and A.A. Tseytlin, One loop β-function in conformal supergravities, Nucl. Phys. B 203 (1982) 157 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. S.M. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary), MIT preprint, U.S.A. March 1983, published posthumously in SIGMA 4 (2008) 36 [arXiv:0803.4331].

  26. R. Riegert, A nonlocal action for the trace anomaly, Phys. Lett. B 134 (1984) 56 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A.R. Gover and L.J. Peterson, Conformally invariant powers of the Laplacian, Q-curvature and tractor calculus, Commun. Math. Phys. 235 (2003) 339 [math-ph/0201030] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. de Roo, J. van Holten, B. de Wit and A. Van Proeyen, Chiral superfields in N = 2 supergravity, Nucl. Phys. B 173 (1980) 175 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. B. de Wit, J. van Holten and A. Van Proeyen, Structure of N = 2 supergravity, Nucl. Phys. B 184 (1981) 77 [Erratum ibid. B 222 (1983) 516] [INSPIRE].

    Article  ADS  Google Scholar 

  30. P.S. Howe, A superspace approach to extended conformal supergravity, Phys. Lett. B 100 (1981) 389 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. P.S. Howe, Supergravity in superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. V.O. Rivelles and J. Taylor, Linearized N = 2 superfield supergravity, J. Phys. A 15 (1982) 163 [INSPIRE].

    ADS  Google Scholar 

  33. P.S. Howe, K. Stelle and P. Townsend, Supercurrents, Nucl. Phys. B 192 (1981) 332 [INSPIRE].

    Article  ADS  Google Scholar 

  34. M.F. Sohnius, The multiplet of currents for N = 2 extended supersymmetry, Phys. Lett. B 81 (1979) 8 [INSPIRE].

    Article  ADS  Google Scholar 

  35. W. Siegel, Curved extended superspace from Yang-Mills theory à la strings, Phys. Rev. D 53 (1996) 3324 [hep-th/9510150] [INSPIRE].

    ADS  Google Scholar 

  36. S.M. Kuzenko and S. Theisen, Correlation functions of conserved currents in N = 2 superconformal theory, Class. Quant. Grav. 17 (2000) 665 [hep-th/9907107] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. D. Butter and S.M. Kuzenko, N = 2 supergravity and supercurrents, JHEP 12 (2010) 080 [arXiv:1011.0339] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. S. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1, Benjamin/Cummings, Reading MA U.S.A. (1983) [hep-th/0108200] [INSPIRE].

  39. I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity: or a walk through superspace, IOP, Bristol U.K. (1998).

  40. D. Butter, Background field formalism for chiral matter and gauge fields conformally coupled to supergravity, Nucl. Phys. B 828 (2010) 233 [arXiv:0909.4901] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. D. Butter and S.M. Kuzenko, N = 2 AdS supergravity and supercurrents, JHEP 07 (2011) 081 [arXiv:1104.2153] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. R. Grimm, Solution of the Bianchi identities in SU(2) extended superspace with constraints, in Unification of the fundamental particle interactions, S. Ferrara, J. Ellis and P. van Nieuwenhuizen eds., Plenum Press, New York U.S.A. (1980), pg. 509 [INSPIRE].

  43. M. Müller, Consistent classical supergravity theories, Lect. Notes Phys. 336, Springer, Berlin Germany (1989) [INSPIRE].

  44. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Different representations for the action principle in 4D N = 2 supergravity, JHEP 04 (2009) 007 [arXiv:0812.3464] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Ozkan and Y. Pang, All off-shell R 2 invariants in five dimensional \( \mathcal{N} \) = 2 supergravity, JHEP 08 (2013) 042 [arXiv:1306.1540] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. M. Ozkan and Y. Pang, Supersymmetric completion of Gauss-Bonnet combination in five dimensions, JHEP 03 (2013) 158 [Erratum ibid. 07 (2013) 152] [arXiv:1301.6622] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. E.A. Bergshoeff, J. Rosseel and E. Sezgin, Off-shell D = 5, N = 2 Riemann squared supergravity, Class. Quant. Grav. 28 (2011) 225016 [arXiv:1107.2825] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. A. Sen, Logarithmic corrections to N = 2 black hole entropy: an infrared window into the microstates, arXiv:1108.3842 [INSPIRE].

  49. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton Univ. Pr., Princeton U.S.A. (1992) [INSPIRE].

  50. D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in three dimensions: new off-shell formulation, JHEP 09 (2013) 072 [arXiv:1305.3132] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. D. Butter, N = 1 conformal superspace in four dimensions, Annals Phys. 325 (2010) 1026 [arXiv:0906.4399] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. S. Ferrara, S. Sabharwal and M. Villasante, Curvatures and Gauss-Bonnet theorem in new minimal supergravity, Phys. Lett. B 205 (1988) 302 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. R. Le Du, Higher derivative supergravity in U(1) superspace, Eur. Phys. J. C 5 (1998) 181 [hep-th/9706058] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. P.S. Howe and R. Tucker, Scale invariance in superspace, Phys. Lett. B 80 (1978) 138 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. W. Siegel, Superconformal invariance of superspace with nonminimal auxiliary fields, Phys. Lett. B 80 (1979) 224 [INSPIRE].

    Article  ADS  Google Scholar 

  56. S. Ferrara and B. Zumino, Structure of conformal supergravity, Nucl. Phys. B 134 (1978) 301 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. P. Townsend and P. van Nieuwenhuizen, Anomalies, topological invariants and the Gauss-Bonnet theorem in supergravity, Phys. Rev. D 19 (1979) 3592 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  58. I. Buchbinder and S. Kuzenko, Quantization of the classically equivalent theories in the superspace of simple supergravity and quantum equivalence, Nucl. Phys. B 308 (1988) 162 [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. Ferrara and M. Villasante, Curvatures, Gauss-Bonnet and Chern-Simons multiplets in old minimal N = 1 supergravity, J. Math. Phys. 30 (1989) 104 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. E. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. I. Buchbinder and S. Kuzenko, Nonlocal action for supertrace anomalies in superspace of N =1 supergravity, Phys. Lett. B 202 (1988) 233 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. D. Butter and S.M. Kuzenko, Nonlocal action for the super-Weyl anomalies: a new representation, JHEP 09 (2013) 067 [arXiv:1307.1290] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Butter.

Additional information

ArXiv ePrint: 1307.6546

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butter, D., de Wit, B., Kuzenko, S.M. et al. New higher-derivative invariants in N = 2 supergravity and the Gauss-Bonnet term. J. High Energ. Phys. 2013, 62 (2013). https://doi.org/10.1007/JHEP12(2013)062

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)062

Keywords

Navigation