Skip to main content
Log in

Gravitino dark matter production at finite temperature

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The production and the final abundance of gravitino dark matter appear to depend crucially on the restoration of the global U(1) R-symmetry of GMSB sectors in a threefold way. An R-symmetric phase effectively suppresses the production of goldstinos from scatterings with the supersymmetric Standard Model particles and it generically initiates the goldstino production from the thermalized messenger particles. In addition, the GMSB spurion gets displaced from the zero temperature minimum and under certain conditions it dominates the energy density of the universe producing late entropy. We show that it is possible to have high enough reheating temperatures that thermal leptogenesis and thermal vacuum selection can be realized without gravitino overproduction. The gravitino dark matter can be produced either thermally or non-thermally. In the former case the messenger scale has to be less than about 106 GeV with the gravitino relatively heavy, m 3/2\( \mathcal{O} \)(10) GeV. In the later case, the gravitino is generically produced by the decay of the GMSB spurion field a process that always takes place for large messenger scales. A connection of our results with current collider and observational data is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. N.J. Craig, P.J. Fox and J.G. Wacker, Reheating Metastable ORaifeartaigh Models, Phys. Rev. D 75 (2007) 085006 [hep-th/0611006] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. A. Katz, On the Thermal History of Calculable Gauge Mediation, JHEP 10 (2009) 054 [arXiv:0907.3930] [INSPIRE].

    Article  ADS  Google Scholar 

  5. I. Dalianis and Z. Lalak, Cosmological vacuum selection and metastable SUSY breaking, JHEP 12 (2010) 045 [arXiv:1001.4106] [INSPIRE].

    Article  ADS  Google Scholar 

  6. I. Dalianis and Z. Lalak, Thermally Favourable Gauge Mediation, Phys. Lett. B 697 (2011) 385 [arXiv:1012.3157] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Hanken, B. Kain and C. Manning, Extraordinary Gauge Mediation at Finite Temperature, Phys. Rev. D 87 (2013) 125019 [arXiv:1306.3898] [INSPIRE].

    ADS  Google Scholar 

  8. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  9. G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, Lyman-alpha constraints on warm and on warm-plus-cold dark matter models, JCAP 05 (2009) 012 [arXiv:0812.0010] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A.E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl. Phys. B 416 (1994) 46 [hep-ph/9309299] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. K.A. Intriligator, N. Seiberg and D. Shih, Supersymmetry breaking, R-symmetry breaking and metastable vacua, JHEP 07 (2007) 017 [hep-th/0703281] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Kitano, Gravitational Gauge Mediation, Phys. Lett. B 641 (2006) 203 [hep-ph/0607090] [INSPIRE].

    Article  ADS  Google Scholar 

  14. H. Murayama and Y. Nomura, Gauge Mediation Simplified, Phys. Rev. Lett. 98 (2007) 151803 [hep-ph/0612186] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D. Shih, Spontaneous R-symmetry breaking in ORaifeartaigh models, JHEP 02 (2008) 091 [hep-th/0703196] [INSPIRE].

    Article  ADS  Google Scholar 

  16. Z. Lalak, S. Pokorski and K. Turzynski, Gravity in Gauge Mediation, JHEP 10 (2008) 016 [arXiv:0808.0470] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. Z. Komargodski and D. Shih, Notes on SUSY and R-Symmetry Breaking in Wess-Zumino Models, JHEP 04 (2009) 093 [arXiv:0902.0030] [INSPIRE].

    Article  ADS  Google Scholar 

  18. N. Arkani-Hamed, S. Dimopoulos, G. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. I. Dalianis, R-Symmetry and Gravitino Abundance, Phys. Rev. D 85 (2012) 061301 [arXiv:1110.2072] [INSPIRE].

    ADS  Google Scholar 

  20. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    Article  ADS  Google Scholar 

  21. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

    ADS  Google Scholar 

  22. N. Craig, S. Knapen, D. Shih and Y. Zhao, A Complete Model of Low-Scale Gauge Mediation, JHEP 03 (2013) 154 [arXiv:1206.4086] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. J.A. Evans and D. Shih, Surveying Extended GMSB Models with mh = 125 GeV, JHEP 08 (2013) 093 [arXiv:1303.0228] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J.R. Ellis, J.E. Kim and D.V. Nanopoulos, Cosmological Gravitino Regeneration and Decay, Phys. Lett. B 145 (1984) 181 [INSPIRE].

    Article  ADS  Google Scholar 

  25. T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336-337] [hep-ph/0012052] [INSPIRE].

  27. J. Pradler and F.D. Steffen, Thermal gravitino production and collider tests of leptogenesis, Phys. Rev. D 75 (2007) 023509 [hep-ph/0608344] [INSPIRE].

    ADS  Google Scholar 

  28. V.S. Rychkov and A. Strumia, Thermal production of gravitinos, Phys. Rev. D 75 (2007) 075011 [hep-ph/0701104] [INSPIRE].

    ADS  Google Scholar 

  29. K. Choi, K. Hwang, H.B. Kim and T. Lee, Cosmological gravitino production in gauge mediated supersymmetry breaking models, Phys. Lett. B 467 (1999) 211 [hep-ph/9902291] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Dimopoulos, G. Giudice and A. Pomarol, Dark matter in theories of gauge mediated supersymmetry breaking, Phys. Lett. B 389 (1996) 37 [hep-ph/9607225] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Fujii and T. Yanagida, Natural gravitino dark matter and thermal leptogenesis in gauge mediated supersymmetry breaking models, Phys. Lett. B 549 (2002) 273 [hep-ph/0208191] [INSPIRE].

    Article  ADS  Google Scholar 

  32. K. Jedamzik, M. Lemoine and G. Moultaka, Gravitino dark matter in gauge mediated supersymmetry breaking, Phys. Rev. D 73 (2006) 043514 [hep-ph/0506129] [INSPIRE].

    ADS  Google Scholar 

  33. M. Ibe and R. Kitano, Gauge mediation in supergravity and gravitino dark matter, Phys. Rev. D 75 (2007) 055003 [hep-ph/0611111] [INSPIRE].

    ADS  Google Scholar 

  34. K. Hamaguchi, R. Kitano and F. Takahashi, Non-thermal Gravitino Dark Matter in Gauge Mediation, JHEP 09 (2009) 127 [arXiv:0908.0115] [INSPIRE].

    Article  ADS  Google Scholar 

  35. H. Fukushima, R. Kitano and F. Takahashi, Cosmologically viable gauge mediation, JHEP 02 (2013) 140 [arXiv:1209.1531] [INSPIRE].

    Article  ADS  Google Scholar 

  36. E.W. Kolb and M.S. Turner, The Early universe, Front. Phys. 69 (1990) 1.

    MathSciNet  ADS  Google Scholar 

  37. V. Mukhanov, Physical foundations of cosmology, Cambridge University Press, Cambridge U.K. (2005).

    Book  MATH  Google Scholar 

  38. M. Quirós, Finite temperature field theory and phase transitions, hep-ph/9901312 [INSPIRE].

  39. A.K. Das and M. Kaku, Supersymmetry at high temperatures, Phys. Rev. D 18 (1978) 4540 [INSPIRE].

    ADS  Google Scholar 

  40. L. Girardello, M.T. Grisaru and P. Salomonson, Temperature and Supersymmetry, Nucl. Phys. B 178 (1981) 331 [INSPIRE].

    Article  ADS  Google Scholar 

  41. D. Boyanovsky, Supersymmetry Breaking at Finite Temperature: The Goldstone Fermion, Phys. Rev. D 29 (1984) 743 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. H. Aoyama and D. Boyanovsky, Goldstone Fermions in Supersymmetric Theories at Finite Temperature, Phys. Rev. D 30 (1984) 1356 [INSPIRE].

    ADS  Google Scholar 

  43. R.G. Leigh and R. Rattazzi, Supersymmetry, finite temperature and gravitino production in the early universe, Phys. Lett. B 352 (1995) 20 [hep-ph/9503402] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J. Ellis, D.V. Nanopoulos, K.A. Olive and S.-J. Rey, On the thermal regeneration rate for light gravitinos in the early universe, Astropart. Phys. 4 (1996) 371 [hep-ph/9505438] [INSPIRE].

    Article  ADS  Google Scholar 

  45. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B 212 (1983) 413 [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: An account of four-dimensional N = 1 supersymmetry in high energy physics, World Scientific, Hackensack U.S.A. (2004).

    Google Scholar 

  47. T. Moroi, Effects of the gravitino on the inflationary universe, hep-ph/9503210 [INSPIRE].

  48. M. Dine, Y. Nir and Y. Shirman, Variations on minimal gauge mediated supersymmetry breaking, Phys. Rev. D 55 (1997) 1501 [hep-ph/9607397] [INSPIRE].

    ADS  Google Scholar 

  49. M. Dine, R. Kitano, A. Morisse and Y. Shirman, Moduli decays and gravitinos, Phys. Rev. D 73 (2006) 123518 [hep-ph/0604140] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  50. J. Casas, J. Espinosa, M. Quirós and A. Riotto, The Lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466-468] [hep-ph/9407389] [INSPIRE].

  51. M.S. Carena, J. Espinosa, M. Quirós and C. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].

    Article  ADS  Google Scholar 

  52. H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].

    Google Scholar 

  53. Z. Lalak and M. Lewicki, Fine-tuning in GGM and the 126 GeV Higgs particle, JHEP 05 (2013) 125 [arXiv:1302.6546] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. Davidson and A. Ibarra, A Lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].

    Article  ADS  Google Scholar 

  55. L. Roszkowski, S. Trojanowski, K. Turzynski and K. Jedamzik, Gravitino dark matter with constraints from Higgs boson mass and sneutrino decays, JHEP 03 (2013) 013 [arXiv:1212.5587] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iannis Dalianis.

Additional information

ArXiv ePrint: 1304.7673

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalianis, I. Gravitino dark matter production at finite temperature. J. High Energ. Phys. 2013, 162 (2013). https://doi.org/10.1007/JHEP11(2013)162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)162

Keywords

Navigation