Skip to main content
Log in

Eviction of a 125 GeV “heavy”-Higgs from the MSSM

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We prove that the present experimental constraints are already enough to rule out the possibility of the ∼ 125 GeV Higgs found at LHC being the second lightest Higgs in a general MSSM context, even with explicit CP violation in the Higgs potential. Contrary to previous studies, we are able to eliminate this possibility analytically, using simple expressions for a relatively small number of observables. We show that the present LHC constraints on the diphoton signal strength, τ τ production through Higgs and BR(BX sγ) are enough to preclude the possibility of H 2 being the observed Higgs with m H ⋍ 125 GeV within an MSSM context, without leaving room for finely tuned cancellations. As a by-product, we also comment on the difficulties of an MSSM interpretation of the excess in the γγ production cross section recently found at CMS that could correspond to a second Higgs resonance at m H ⋍ 136 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. S.R. Coleman and J. Mandula, All Possible Symmetries of the S Matrix, Phys. Rev. 159 (1967) 1251 [INSPIRE].

    ADS  MATH  Google Scholar 

  4. R. Haag, J.T. Lopuszanski and M. Sohnius, All Possible Generators of Supersymmetries of the s Matrix, Nucl. Phys. B 88 (1975) 257 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].

    ADS  Google Scholar 

  6. P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].

    ADS  Google Scholar 

  7. G.R. Farrar and P. Fayet, Phenomenology of the Production, Decay and Detection of New Hadronic States Associated with Supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE].

    ADS  Google Scholar 

  8. E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].

    ADS  Google Scholar 

  9. S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].

    ADS  Google Scholar 

  10. N. Sakai, Naturalness in Supersymmetric Guts, Z. Phys. C 11 (1981) 153 [INSPIRE].

    ADS  Google Scholar 

  11. L.E. Ibáñez and G.G. Ross, Low-Energy Predictions in Supersymmetric Grand Unified Theories, Phys. Lett. B 105 (1981) 439 [INSPIRE].

    ADS  Google Scholar 

  12. R.K. Kaul, Gauge Hierarchy in a Supersymmetric Model, Phys. Lett. B 109 (1982) 19 [INSPIRE].

    ADS  Google Scholar 

  13. H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE].

    ADS  Google Scholar 

  14. H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    ADS  Google Scholar 

  15. A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    ADS  Google Scholar 

  16. A. Pilaftsis, Higgs scalar-pseudoscalar mixing in the minimal supersymmetric standard model, Phys. Lett. B 435 (1998) 88 [hep-ph/9805373] [INSPIRE].

    ADS  Google Scholar 

  17. A. Pilaftsis, CP odd tadpole renormalization of Higgs scalar-pseudoscalar mixing, Phys. Rev. D 58 (1998) 096010 [hep-ph/9803297] [INSPIRE].

    ADS  Google Scholar 

  18. A. Pilaftsis and C.E. Wagner, Higgs bosons in the minimal supersymmetric standard model with explicit CP-violation, Nucl. Phys. B 553 (1999) 3 [hep-ph/9902371] [INSPIRE].

    ADS  Google Scholar 

  19. D.A. Demir, Effects of the supersymmetric phases on the neutral Higgs sector, Phys. Rev. D 60 (1999) 055006 [hep-ph/9901389] [INSPIRE].

    ADS  Google Scholar 

  20. M.S. Carena, J.R. Ellis, A. Pilaftsis and C. Wagner, Renormalization group improved effective potential for the MSSM Higgs sector with explicit CP-violation, Nucl. Phys. B 586 (2000) 92 [hep-ph/0003180] [INSPIRE].

    ADS  Google Scholar 

  21. S. Choi, M. Drees and J.S. Lee, Loop corrections to the neutral Higgs boson sector of the MSSM with explicit CP-violation, Phys. Lett. B 481 (2000) 57 [hep-ph/0002287] [INSPIRE].

    ADS  Google Scholar 

  22. M.S. Carena, J.R. Ellis, A. Pilaftsis and C. Wagner, Higgs boson pole masses in the MSSM with explicit CP-violation, Nucl. Phys. B 625 (2002) 345 [hep-ph/0111245] [INSPIRE].

    ADS  Google Scholar 

  23. S. Choi, K. Hagiwara and J.S. Lee, Higgs boson decays in the minimal supersymmetric standard model with radiative Higgs sector CP-violation, Phys. Rev. D 64 (2001) 032004 [hep-ph/0103294] [INSPIRE].

    ADS  Google Scholar 

  24. S. Choi, M. Drees, J.S. Lee and J. Song, Supersymmetric Higgs boson decays in the MSSM with explicit CP-violation, Eur. Phys. J. C 25 (2002) 307 [hep-ph/0204200] [INSPIRE].

    ADS  Google Scholar 

  25. S.M. Barr and A. Zee, Electric Dipole Moment of the Electron and of the Neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].

    ADS  Google Scholar 

  26. D. Chang, W.-F. Chang and W.-Y. Keung, Additional two loop contributions to electric dipole moments in supersymmetric theories, Phys. Lett. B 478 (2000) 239 [hep-ph/9910465] [INSPIRE].

    ADS  Google Scholar 

  27. J.R. Ellis, J.S. Lee and A. Pilaftsis, Electric Dipole Moments in the MSSM Reloaded, JHEP 10 (2008) 049 [arXiv:0808.1819] [INSPIRE].

    ADS  Google Scholar 

  28. A. Pilaftsis, Higgs boson two loop contributions to electric dipole moments in the MSSM, Phys. Lett. B 471 (1999) 174 [hep-ph/9909485] [INSPIRE].

    ADS  Google Scholar 

  29. S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs Search Results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].

    ADS  Google Scholar 

  30. K. Hagiwara, J.S. Lee and J. Nakamura, Properties of 125 GeV Higgs boson in non-decoupling MSSM scenarios, JHEP 10 (2012) 002 [arXiv:1207.0802] [INSPIRE].

    ADS  Google Scholar 

  31. A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].

    ADS  Google Scholar 

  32. P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak, G. Weiglein and L. Zeune, MSSM Interpretations of the LHC Discovery: Light or Heavy Higgs?, Eur. Phys. J. C 73 (2013) 2354 [arXiv:1211.1955] [INSPIRE].

    ADS  Google Scholar 

  33. J. Ke, H. Lüo, M.-x. Luo, K. Wang, L. Wang and G. Zhu, Revisit to Non-decoupling MSSM, Phys. Lett. B 723 (2013) 113 [arXiv:1211.2427] [INSPIRE].

    ADS  Google Scholar 

  34. J. Ke et al., What if bb does not dominate the decay of the Higgs-like boson?, arXiv:1212.6311 [INSPIRE].

  35. S. Moretti, S. Munir and P. Poulose, The 125 GeV Higgs Boson signal within the Complex NMSSM, arXiv:1305.0166 [INSPIRE].

  36. S. Scopel, N. Fornengo and A. Bottino, Embedding the 125 GeV Higgs boson measured at the LHC in an effective MSSM: possible implications for neutralino dark matter, Phys. Rev. D 88 (2013) 023506 [arXiv:1304.5353] [INSPIRE].

    ADS  Google Scholar 

  37. J. Lee et al., CPsuperH: A computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP-violation, Comput. Phys. Commun. 156 (2004) 283 [hep-ph/0307377] [INSPIRE].

    ADS  Google Scholar 

  38. J. Lee, M. Carena, J. Ellis, A. Pilaftsis and C. Wagner, CPsuperH2.3: an Updated Tool for Phenomenology in the MSSM with Explicit CP-violation, Comput. Phys. Commun. 184 (2013) 1220 [arXiv:1208.2212] [INSPIRE].

    ADS  Google Scholar 

  39. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

    ADS  MATH  Google Scholar 

  40. T. Hahn, W. Hollik, S. Heinemeyer and G. Weiglein, Precision Higgs masses with FeynHiggs 2.2, eConf C 050318 (2005) 0106 [hep-ph/0507009] [INSPIRE].

    Google Scholar 

  41. J.R. Ellis, K.A. Olive and Y. Santoso, The MSSM parameter space with nonuniversal Higgs masses, Phys. Lett. B 539 (2002) 107 [hep-ph/0204192] [INSPIRE].

    ADS  Google Scholar 

  42. J.R. Ellis, T. Falk, K.A. Olive and Y. Santoso, Exploration of the MSSM with nonuniversal Higgs masses, Nucl. Phys. B 652 (2003) 259 [hep-ph/0210205] [INSPIRE].

    ADS  Google Scholar 

  43. J.R. Ellis, K.A. Olive and P. Sandick, Varying the Universality of Supersymmetry-Breaking Contributions to MSSM Higgs Boson Masses, Phys. Rev. D 78 (2008) 075012 [arXiv:0805.2343] [INSPIRE].

    ADS  Google Scholar 

  44. C.F. Berger, J.S. Gainer, J.L. Hewett and T.G. Rizzo, Supersymmetry Without Prejudice, JHEP 02 (2009) 023 [arXiv:0812.0980] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz and M. Hobson, Fitting the Phenomenological MSSM, Phys. Rev. D 81 (2010) 095012 [arXiv:0904.2548] [INSPIRE].

    ADS  Google Scholar 

  46. A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, An update on the constraints on the phenomenological MSSM from the new LHC Higgs results, Phys. Lett. B 720 (2013) 153 [arXiv:1211.4004] [INSPIRE].

    ADS  Google Scholar 

  47. ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).

  48. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).

  49. ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].

    ADS  Google Scholar 

  50. ATLAS collaboration, Search for the Standard Model Higgs boson in the H to τ + τ decay mode in \( \sqrt{s} \) = 7 TeV pp collisions with ATLAS, JHEP 09 (2012) 070 [arXiv:1206.5971] [INSPIRE].

    ADS  Google Scholar 

  51. CMS Collaboration, Search for the Standard-Model Higgs boson decaying to tau pairs in proton-proton collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-13-004.

  52. ATLAS collaboration, Search for the neutral Higgs bosons of the Minimal Supersymmetric Standard Model in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 02 (2013) 095 [arXiv:1211.6956] [INSPIRE].

    ADS  Google Scholar 

  53. L. Fiorini, private communication.

  54. ATLAS collaboration, Search for charged Higgs bosons decaying via H +τν in top quark pair events using pp collision data at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].

    ADS  Google Scholar 

  55. CMS collaboration, Updated search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s} \) = 7 TeV, CMS-PAS-HIG-12-052.

  56. CMS collaboration, Search for new physics in events with same-sign dileptons and b jets in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 03 (2013) 037 [Erratum ibid. 1307 (2013) 041] [arXiv:1212.6194] [INSPIRE].

    ADS  Google Scholar 

  57. CMS collaboration, Search for gluino mediated bottom- and top-squark production in multijet final states in pp collisions at 8 TeV, Phys. Lett. B 725 (2013) 243 [arXiv:1305.2390] [INSPIRE].

    ADS  Google Scholar 

  58. CMS collaboration, Search for Supersymmetry in pp collisions at 8 TeV in events with a single lepton, multiple jets and b-tags, PAS-SUS-13-007.

  59. CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s} \) = 8 TeV in events with three leptons and at least one b-tagged jet, PAS-SUS-13-008.

  60. ATLAS collaboration, Search for gluino pair production in final states with missing transverse momentum and at least three b-jets using 12.8 fb-1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS Detector., ATLAS-CONF-2012-145 (2012).

  61. ATLAS collaboration, Search for strongly produced superpartners in final states with two same sign leptons with the ATLAS detector using 21 fb-1 of proton-proton collisions at \( \sqrt{s} \) = 8 TeV., ATLAS-CONF-2013-007 (2013).

  62. CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions \( \sqrt{s} \) =8 TeV, Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985] [INSPIRE].

  63. ATLAS collaboration, Search for direct production of the top squark in the all-hadronic ttbar + etmiss final state in 21 fb-1 of p-pcollisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-024 (2013).

  64. ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in sqrts = 8,TeV pp collisions using 21 fb −1 of ATLAS data, ATLAS-CONF-2013-037 (2013).

  65. ATLAS collaboration, Search for direct third generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector., ATLAS-CONF-2013-053 (2013).

  66. CMS collaboration, Search for top-squark pair production in the single lepton final state in pp collisions at 8 TeV, PAS-SUS-13-011.

  67. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb −1 of pp collisions at \( \sqrt{s} \) = 8TeV with the ATLAS detector,ATLAS-CONF-2013-035 (2013).

  68. CMS collaboration, Search for direct EWK production of SUSY particles in multilepton modes with 8 TeV data, PAS-SUS-12-022.

  69. A. Bharucha, S. Heinemeyer and F. von der Pahlen, Direct Chargino-Neutralino Production at the LHC: Interpreting the Exclusion Limits in the Complex MSSM, arXiv:1307.4237 [INSPIRE].

  70. A. Masiero and O. Vives, New physics in CP-violation experiments, Ann. Rev. Nucl. Part. Sci. 51 (2001) 161 [hep-ph/0104027] [INSPIRE].

    ADS  Google Scholar 

  71. M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [INSPIRE].

    ADS  Google Scholar 

  72. L. Calibbi, R. Hodgkinson, J. Jones Perez, A. Masiero and O. Vives, Flavour and Collider Interplay for SUSY at LHC7, Eur. Phys. J. C 72 (2012) 1863 [arXiv:1111.0176] [INSPIRE].

    ADS  Google Scholar 

  73. LHCb collaboration, First Evidence for the Decay \( B_s^0 \)μ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].

    Google Scholar 

  74. LHCb collaboration, Measurement of the \( B_s^0 \)μ + μ branching fraction and search for B 0μ + μ decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].

    Google Scholar 

  75. CMS collaboration, Measurement of the \( B_s^0 \)μ + μ branching fraction and search for B 0μ + μ with the CMS Experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].

    ADS  Google Scholar 

  76. CLEO collaboration, S. Chen et al., Branching fraction and photon energy spectrum for bsγ, Phys. Rev. Lett. 87(2001) 251807 [hep-ex/0108032][INSPIRE].

    ADS  Google Scholar 

  77. Belle collaboration, K. Abe et al., A Measurement of the branching fraction for the inclusive BX s γ decays with BELLE, Phys. Lett. B 511(2001) 151 [hep-ex/0103042] [INSPIRE].

    ADS  Google Scholar 

  78. Belle collaboration, A. Limosani et al., Measurement of Inclusive Radiative B-meson Decays with a Photon Energy Threshold of 1.7 GeV, Phys. Rev. Lett. 103 (2009) 241801 [arXiv:0907.1384] [INSPIRE].

    ADS  Google Scholar 

  79. BaBar collaboration, J. Lees et al., Exclusive Measurements of bsγ Transition Rate and Photon Energy Spectrum, Phys. Rev. D 86 (2012) 052012 [arXiv:1207.2520] [INSPIRE].

    ADS  Google Scholar 

  80. BaBar collaboration, J. Lees et al., Measurement of B(BX s γ), the BX s γ photon energy spectrum and the direct CP asymmetry in BX s+d γ decays, Phys. Rev. D 86 (2012) 112008 [arXiv:1207.5772] [INSPIRE].

    ADS  Google Scholar 

  81. BaBar collaboration, B. Aubert et al., Measurement of the BX s γ branching fraction and photon energy spectrum using the recoil method, Phys. Rev. D 77 (2008) 051103 [arXiv:0711.4889] [INSPIRE].

    ADS  Google Scholar 

  82. Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-Hadron, C-Hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  83. HFAG: Rare B decay parameterss, http://www.slac.stanford.edu/xorg/hfag/rare/.

  84. K. Funakubo, S. Tao and F. Toyoda, CP violation in the Higgs sector and phase transition in the MSSM, Prog. Theor. Phys. 109 (2003) 415 [hep-ph/0211238] [INSPIRE].

    ADS  MATH  Google Scholar 

  85. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    ADS  Google Scholar 

  86. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

    ADS  Google Scholar 

  87. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    ADS  Google Scholar 

  88. H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].

    Google Scholar 

  89. A. Djouadi and J. Quevillon, The MSSM Higgs sector at a high M SUSY : reopening the low tanβ regime and heavy Higgs searches, arXiv:1304.1787 [INSPIRE].

  90. M.S. Carena, J. Espinosa, M. Quirós and C. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].

    ADS  Google Scholar 

  91. M.S. Carena, J.R. Ellis, A. Pilaftsis and C. Wagner, CP violating MSSM Higgs bosons in the light of LEP-2, Phys. Lett. B 495 (2000) 155 [hep-ph/0009212] [INSPIRE].

    ADS  Google Scholar 

  92. M.S. Carena, J.R. Ellis, S. Mrenna, A. Pilaftsis and C. Wagner, Collider probes of the MSSM Higgs sector with explicit CP-violation, Nucl. Phys. B 659 (2003) 145 [hep-ph/0211467] [INSPIRE].

    ADS  Google Scholar 

  93. K. Williams and G. Weiglein, Precise predictions for h a h b h c decays in the complex MSSM, Phys. Lett. B 660 (2008) 217 [arXiv:0710.5320] [INSPIRE].

    ADS  Google Scholar 

  94. L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].

    ADS  Google Scholar 

  95. M.S. Carena, M. Olechowski, S. Pokorski and C. Wagner, Electroweak symmetry breaking and bottom - top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].

    ADS  Google Scholar 

  96. T. Blazek, S. Raby and S. Pokorski, Finite supersymmetric threshold corrections to CKM matrix elements in the large tan Beta regime, Phys. Rev. D 52 (1995) 4151 [hep-ph/9504364] [INSPIRE].

    ADS  Google Scholar 

  97. M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, Effective Lagrangian for the \( \overline{t} \) bH + interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].

    ADS  Google Scholar 

  98. C. Hamzaoui, M. Pospelov and M. Toharia, Higgs mediated FCNC in supersymmetric models with large tan Beta, Phys. Rev. D 59 (1999) 095005 [hep-ph/9807350] [INSPIRE].

    ADS  Google Scholar 

  99. K. Babu and C.F. Kolda, Higgs mediated B 0μ + μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [INSPIRE].

    ADS  Google Scholar 

  100. G. Isidori and A. Retico, Scalar flavor changing neutral currents in the large tan beta limit, JHEP 11 (2001) 001 [hep-ph/0110121] [INSPIRE].

    ADS  Google Scholar 

  101. A. Dedes and A. Pilaftsis, Resummed effective Lagrangian for Higgs mediated FCNC interactions in the CP-violating MSSM, Phys. Rev. D 67 (2003) 015012 [hep-ph/0209306] [INSPIRE].

    ADS  Google Scholar 

  102. A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawianowska, ΔM d,s , B 0 d, sμ + μ and BX s γ in supersymmetry at large tan β, Nucl. Phys. B 659(2003) 3[hep-ph/0210145] [INSPIRE].

    ADS  Google Scholar 

  103. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    ADS  Google Scholar 

  104. M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].

    ADS  MATH  Google Scholar 

  105. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    ADS  Google Scholar 

  106. A. Dedes and S. Moretti, Effect of large supersymmetric phases on Higgs production., Phys. Rev. Lett. 84 (2000) 22 [hep-ph/9908516] [INSPIRE].

    ADS  Google Scholar 

  107. A. Dedes and S. Moretti, Effects of CP-violating phases on Higgs boson production at hadron colliders in the minimal supersymmetric standard model, Nucl. Phys. B 576 (2000) 29 [hep-ph/9909418] [INSPIRE].

    ADS  Google Scholar 

  108. S. Choi and J.S. Lee, MSSM Higgs boson production at hadron colliders with explicit CP-violation, Phys. Rev. D 61 (2000) 115002 [hep-ph/9910557] [INSPIRE].

    ADS  Google Scholar 

  109. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    ADS  Google Scholar 

  110. D.A. Dicus and S. Willenbrock, Higgs Boson Production from Heavy Quark Fusion, Phys. Rev. D 39 (1989) 751 [INSPIRE].

    ADS  Google Scholar 

  111. J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Higgs-Boson production in association with a single bottom quark, Phys. Rev. D 67 (2003) 095002 [hep-ph/0204093] [INSPIRE].

    ADS  Google Scholar 

  112. F. Maltoni, Z. Sullivan and S. Willenbrock, Higgs-boson production via bottom-quark fusion, Phys. Rev. D 67 (2003) 093005 [hep-ph/0301033] [INSPIRE].

    ADS  Google Scholar 

  113. R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].

    ADS  Google Scholar 

  114. S. Dittmaier, M. Kramer and M. Spira, Higgs radiation off bottom quarks at the Tevatron and the CERN LHC, Phys. Rev. D 70 (2004) 074010 [hep-ph/0309204] [INSPIRE].

    ADS  Google Scholar 

  115. S. Dawson, C. Jackson, L. Reina and D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders, Phys. Rev. D 69 (2004) 074027 [hep-ph/0311067] [INSPIRE].

    ADS  Google Scholar 

  116. J. Baglio and A. Djouadi, Higgs production at the LHC, JHEP 03 (2011) 055 [arXiv:1012.0530] [INSPIRE].

    ADS  Google Scholar 

  117. D. Graudenz, M. Spira and P. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].

    ADS  Google Scholar 

  118. S. Dawson, A. Djouadi and M. Spira, QCD corrections to SUSY Higgs production: The Role of squark loops, Phys. Rev. Lett. 77 (1996) 16 [hep-ph/9603423] [INSPIRE].

    ADS  Google Scholar 

  119. A. Djouadi and M. Spira, SUSY - QCD corrections to Higgs boson production at hadron colliders, Phys. Rev. D 62 (2000) 014004 [hep-ph/9912476] [INSPIRE].

    ADS  Google Scholar 

  120. G. Degrassi, P. Gambino and G. Giudice, BX s γ in supersymmetry: Large contributions beyond the leading order, JHEP 12 (2000) 009 [hep-ph/0009337] [INSPIRE].

    ADS  Google Scholar 

  121. M. Misiak et al., Estimate of B(\( \overline{B} \)X(s)γ) at O( \( \alpha_s^2 \) ), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    ADS  Google Scholar 

  122. E. Lunghi and J. Matias, Huge right-handed current effects in BK (Kpi) + in supersymmetry, JHEP 04 (2007) 058 [hep-ph/0612166] [INSPIRE].

    ADS  Google Scholar 

  123. M.E. Gomez, T. Ibrahim, P. Nath and S. Skadhauge, An improved analysis of bsγ in supersymmetry, Phys. Rev. D 74 (2006) 015015 [hep-ph/0601163] [INSPIRE].

    ADS  Google Scholar 

  124. M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light Stops, Light Staus and the 125 GeV Higgs, JHEP 08 (2013) 087 [arXiv:1303.4414] [INSPIRE].

    ADS  Google Scholar 

  125. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    ADS  Google Scholar 

  126. M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light Stau Phenomenology and the Higgs γγ Rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    ADS  Google Scholar 

  127. CMS collaboration, Properties of the observed Higgs-like resonance using the diphoton channel, CMS-PAS-HIG-13-016.

  128. G. Barenboim, C. Bosch, M.L. López-Ibáñez and O. Vives, work in progress.

  129. D. Chung, L. Everett, G. Kane, S. King, J.D. Lykken and L.-T. Wang, The Soft supersymmetry breaking Lagrangian: Theory and applications, Phys. Rept. 407 (2005) 1 [hep-ph/0312378] [INSPIRE].

    ADS  Google Scholar 

  130. A.J. Buras, A. Romanino and L. Silvestrini, Kπν \( \overline{\nu} \) : A model independent analysis and supersymmetry, Nucl. Phys. B 520 (1998) 3 [hep-ph/9712398] [INSPIRE].

    ADS  Google Scholar 

  131. A. Masiero, S. Vempati and O. Vives, Flavour physics and grand unification, arXiv:0711.2903 [INSPIRE].

  132. L. Clavelli, T. Gajdosik and W. Majerotto, Gaugino mass dependence of electron and neutron electric dipole moments, Phys. Lett. B 494 (2000) 287 [hep-ph/0007342] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Vives.

Additional information

ArXiv ePrint: 1307.5973

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barenboim, G., Bosch, C., López-Ibáñez, M. et al. Eviction of a 125 GeV “heavy”-Higgs from the MSSM. J. High Energ. Phys. 2013, 51 (2013). https://doi.org/10.1007/JHEP11(2013)051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)051

Keywords

Navigation