Skip to main content
Log in

Topology of future infinity in dS/CFT

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The dS/CFT proposal of Anninos, Hartman, and Strominger relates quantum Vasiliev gravity in dS4 to a large N vector theory in three dimensions. We use this proposal to compute the Wheeler-de Witt wave function of a universe having a particular topology at future infinity. This amplitude is found to grow rapidly with the topological complexity of the spatial slice; this is due to the plethora of states of the Chern-Simons theory that is needed to impose the singlet constraint. Various mechanisms are considered which might ameliorate this growth, but none seems completely satisfactory. We also study the topology dependence in Einstein gravity by computing the action of complex instantons; the wave function then depends on a choice of contour through the space of metrics. The most natural contour prescription leads to a growth with genus similar to the one found in Vasiliev theory, albeit with a different power of Newton’s constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Anninos, de Sitter Musings, Int. J. Mod. Phys. A 27 (2012) 1230013 [arXiv:1205.3855] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. T. Banks, B. Fiol and A. Morisse, Towards a quantum theory of de Sitter space, JHEP 12 (2006)004 [hep-th/0609062] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Alishahiha, A. Karch, E. Silverstein and D. Tong, The dS/dS correspondence, AIP Conf. Proc. 743 (2005) 393 [hep-th/0407125] [INSPIRE].

    Article  ADS  Google Scholar 

  5. B. Freivogel, Y. Sekino, L. Susskind and C.-P. Yeh, A Holographic framework for eternal inflation, Phys. Rev. D 74 (2006) 086003 [hep-th/0606204] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [INSPIRE].

  7. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    Article  ADS  Google Scholar 

  8. D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT Correspondence, arXiv:1108.5735 [INSPIRE].

  9. S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. D. Anninos, F. Denef and D. Harlow, The Wave Function of Vasilievs Universe - A Few Slices Thereof, arXiv:1207.5517 [INSPIRE].

  11. D. Anninos, F. Denef, G. Konstantinidis and E. Shaghoulian, Higher Spin de Sitter Holography from Functional Determinants, arXiv:1305.6321 [INSPIRE].

  12. A. Castro and A. Maloney, The Wave Function of Quantum de Sitter, JHEP 11 (2012) 096 [arXiv:1209.5757] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. G. Gibbons and J. Hartle, Real Tunneling Geometries and the Large Scale Topology of the Universe, Phys. Rev. D 42 (1990) 2458 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002)213 [hep-th/0210114] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large-N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Banerjee, S. Hellerman, J. Maltz and S.H. Shenker, Light States in Chern-Simons Theory Coupled to Fundamental Matter, JHEP 03 (2013) 097 [arXiv:1207.4195] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989)351 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. G.W. Moore and N. Seiberg, Taming the Conformal Zoo, Phys. Lett. B 220 (1989) 422 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Marino, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].

    ADS  Google Scholar 

  25. O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. M. Aganagic, S. Hellerman, D. Jafferis and C. Vafa, in preparation.

  28. I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without Supersymmetry, JHEP 10 (2011)038 [arXiv:1105.4598] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. D. Radicevic, Singlet Vector Models on Lens Spaces, arXiv:1210.0255 [INSPIRE].

  30. B. Anninos and S. Radičević, in preparation.

  31. S.H. Shenker and X. Yin, Vector Models in the Singlet Sector at Finite Temperature, arXiv:1109.3519 [INSPIRE].

  32. M. Marino, S. Pasquetti and P. Putrov, Large-N duality beyond the genus expansion, JHEP 07 (2010) 074 [arXiv:0911.4692] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. E. Witten, Analytic Continuation Of Chern-Simons Theory, arXiv:1001.2933 [INSPIRE].

  34. R. Mkrtchyan, Nonperturbative universal Chern-Simons theory, JHEP 09 (2013) 054 [arXiv:1302.1507] [INSPIRE].

    Article  ADS  Google Scholar 

  35. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn - deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  36. E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys. 141 (1991) 153 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. M. Blau and G. Thompson, Derivation of the Verlinde formula from Chern-Simons theory and the G/G model, Nucl. Phys. B 408 (1993) 345 [hep-th/9305010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. M. Blau and G. Thompson, Lectures on 2 − D gauge theories: Topological aspects and path integral techniques, hep-th/9310144 [INSPIRE].

  39. E. Witten, Topology Changing Amplitudes in (2 + 1)-Dimensional Gravity, Nucl. Phys. B 323 (1989)113 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. G.T. Horowitz, Exactly Soluble Diffeomorphism Invariant Theories, Commun. Math. Phys. 125 (1989)417 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. J.C. Baez, An Introduction to spin foam models of quantum gravity and BF theory, Lect. Notes Phys. 543 (2000) 25 [gr-qc/9905087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. E. Witten, SL(2, \( \mathbb{Z} \)) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].

  43. S. Gukov, E. Martinec, G.W. Moore and A. Strominger, Chern-Simons gauge theory and the AdS 3 /CF T 2 correspondence, hep-th/0403225 [INSPIRE].

  44. T.H. Hansson, V. Oganesyan and S.L. Sondhi, Superconductors are topologically ordered, Ann. Phys. 313 (2004) 497 [cond-mat/0404327].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. G. ’t Hooft, Topology of the Gauge Condition and New Confinement Phases in Nonabelian Gauge Theories, Nucl. Phys. B 190 (1981) 455 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. S. Jain, S. Minwalla, T. Sharma, T. Takimi, S.R. Wadia et al., Phases of large-N vector Chern-Simons theories on S 2 × S 1, JHEP 09 (2013) 009 [arXiv:1301.6169] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Hellerman, A Universal Inequality for CFT and Quantum Gravity, JHEP 08 (2011) 130 [arXiv:0902.2790] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. R. Bousso, A. Maloney and A. Strominger, Conformal vacua and entropy in de Sitter space, Phys. Rev. D 65 (2002) 104039 [hep-th/0112218] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. J.B. Hartle, S. Hawking and T. Hertog, Inflation with Negative Λ, arXiv:1207.6653 [INSPIRE].

  51. R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. N. Goheer, M. Kleban and L. Susskind, The Trouble with de Sitter space, JHEP 07 (2003) 056 [hep-th/0212209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. J.L. Friedman, K. Schleich and D.M. Witt, Topological censorship, Phys. Rev. Lett. 71 (1993)1486 [Erratum ibid. 75 (1995) 1872] [gr-qc/9305017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ðorđe Radičević.

Additional information

ArXiv ePrint: 1306.6629

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Belin, A., Hellerman, S. et al. Topology of future infinity in dS/CFT. J. High Energ. Phys. 2013, 26 (2013). https://doi.org/10.1007/JHEP11(2013)026

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)026

Keywords

Navigation