Skip to main content
Log in

Simplified models for dark matter interacting with quarks

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate simplified models in which dark matter particles, taken to be either Dirac or Majorana fermions, couple to quarks via colored mediators. We determine bounds from colliders and direct detection experiments, and show how the interplay of the two leads to a complementary view of this class of dark matter models. Forecasts for future searches in light of the current constraints are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Bauer et al., Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond, arXiv:1305.1605 [INSPIRE].

  2. M. Cahill-Rowley et al., Complementarity and Searches for Dark Matter in the pMSSM, arXiv:1305.6921 [INSPIRE].

  3. LHC New Physics Working Group collaboration, D. Alves et al., Simplified Models for LHC New Physics Searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Beltrán, D. Hooper, E.W. Kolb, Z.A. Krusberg and T.M. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].

    Article  ADS  Google Scholar 

  5. Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Effective Dark Matter Model: Relic density, CDMS II, Fermi LAT and LHC, JHEP 08 (2011) 018 [arXiv:0912.4511] [INSPIRE].

    Google Scholar 

  6. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait and H.-B. Yu, Constraints on Light Majorana dark Matter from Colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].

    Article  ADS  Google Scholar 

  7. Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the Frontier of Dark Matter Direct Detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].

    Article  ADS  Google Scholar 

  8. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait and H.-B. Yu, Constraints on Dark Matter from Colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].

    ADS  Google Scholar 

  9. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP Shines Light on Dark Matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].

    ADS  Google Scholar 

  10. A. Rajaraman, W. Shepherd, T.M. Tait and A.M. Wijangco, LHC Bounds on Interactions of Dark Matter, Phys. Rev. D 84 (2011) 095013 [arXiv:1108.1196] [INSPIRE].

    ADS  Google Scholar 

  11. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing Energy Signatures of Dark Matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].

    ADS  Google Scholar 

  12. P.J. Fox, R. Harnik, R. Primulando and C.-T. Yu, Taking a Razor to Dark Matter Parameter Space at the LHC, Phys. Rev. D 86 (2012) 015010 [arXiv:1203.1662] [INSPIRE].

    ADS  Google Scholar 

  13. J.-F. Fortin and T.M. Tait, Collider Constraints on Dipole-Interacting Dark Matter, Phys. Rev. D 85 (2012) 063506 [arXiv:1103.3289] [INSPIRE].

    ADS  Google Scholar 

  14. Y. Bai and T.M. Tait, Searches with Mono-Leptons, Phys. Lett. B 723 (2013) 384 [arXiv:1208.4361] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R. Ding and Y. Liao, Spin 3/2 Particle as a Dark Matter Candidate: an Effective Field Theory Approach, JHEP 04 (2012) 054 [arXiv:1201.0506] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R. Cotta, J. Hewett, M. Le and T. Rizzo, Bounds on Dark Matter Interactions with Electroweak Gauge Bosons, arXiv:1210.0525 [INSPIRE].

  17. H. Dreiner, D. Schmeier and J. Tattersall, Contact Interactions Probe Effective Dark Matter Models at the LHC, Europhys. Lett. 102 (2013) 51001 [arXiv:1303.3348] [INSPIRE].

    Article  ADS  Google Scholar 

  18. L.M. Carpenter, A. Nelson, C. Shimmin, T.M. Tait and D. Whiteson, Collider searches for dark matter in events with a Z boson and missing energy, arXiv:1212.3352 [INSPIRE].

  19. Z.-H. Yu, Q.-S. Yan and P.-F. Yin, Detecting interactions between dark matter and photons at high energy e + e colliders, arXiv:1307.5740 [INSPIRE].

  20. M. Beltrán, D. Hooper, E.W. Kolb and Z.C. Krusberg, Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics, Phys. Rev. D 80 (2009) 043509 [arXiv:0808.3384] [INSPIRE].

    ADS  Google Scholar 

  21. A. Kurylov and M. Kamionkowski, Generalized analysis of weakly interacting massive particle searches, Phys. Rev. D 69 (2004) 063503 [hep-ph/0307185] [INSPIRE].

    ADS  Google Scholar 

  22. K. Cheung, P.-Y. Tseng, Y.-L.S. Tsai and T.-C. Yuan, Global Constraints on Effective Dark Matter Interactions: Relic Density, Direct Detection, Indirect Detection and Collider, JCAP 05 (2012) 001 [arXiv:1201.3402] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait and H.-B. Yu, Gamma Ray Line Constraints on Effective Theories of Dark Matter, Nucl. Phys. B 844 (2011) 55 [arXiv:1009.0008] [INSPIRE].

    Article  ADS  Google Scholar 

  24. K. Cheung, P.-Y. Tseng and T.-C. Yuan, Cosmic Antiproton Constraints on Effective Interactions of the Dark Matter, JCAP 01 (2011) 004 [arXiv:1011.2310] [INSPIRE].

    Article  ADS  Google Scholar 

  25. K. Cheung, P.-Y. Tseng and T.-C. Yuan, Gamma-ray Constraints on Effective Interactions of the Dark Matter, JCAP 06 (2011) 023 [arXiv:1104.5329] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Rajaraman, T.M. Tait and D. Whiteson, Two Lines or Not Two Lines? That is the Question of Gamma Ray Spectra, JCAP 09 (2012) 003 [arXiv:1205.4723] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Rajaraman, T.M. Tait and A.M. Wijangco, Effective Theories of Gamma-ray Lines from Dark Matter Annihilation, Phys. Dark Univ. 2 (2013) 17 [arXiv:1211.7061] [INSPIRE].

    Article  Google Scholar 

  28. A. De Simone, A. Monin, A. Thamm and A. Urbano, On the effective operators for Dark Matter annihilations, JCAP 02 (2013) 039 [arXiv:1301.1486] [INSPIRE].

    Article  Google Scholar 

  29. J.-M. Zheng, Z.-H. Yu, J.-W. Shao, X.-J. Bi, Z. Li et al., Constraining the interaction strength between dark matter and visible matter: I. fermionic dark matter, Nucl. Phys. B 854 (2012) 350 [arXiv:1012.2022] [INSPIRE].

    Article  ADS  Google Scholar 

  30. B. Bellazzini, M. Cliche and P. Tanedo, The Effective Theory of Self-Interacting Dark Matter, arXiv:1307.1129 [INSPIRE].

  31. I.M. Shoemaker, Constraints on Dark Matter Protohalos in Effective Theories and Neutrinophilic Dark Matter, arXiv:1305.1936 [INSPIRE].

  32. P. Gondolo, J. Hisano and K. Kadota, The effect of quark interactions on dark matter kinetic decoupling and the mass of the smallest dark halos, Phys. Rev. D 86 (2012) 083523 [arXiv:1205.1914] [INSPIRE].

    ADS  Google Scholar 

  33. J.M. Cornell, S. Profumo and W. Shepherd, Kinetic Decoupling and Small-Scale Structure in Effective Theories of Dark Matter, Phys. Rev. D 88 (2013) 015027 [arXiv:1305.4676] [INSPIRE].

    ADS  Google Scholar 

  34. J. Goodman and W. Shepherd, LHC Bounds on UV-Complete Models of Dark Matter, arXiv:1111.2359 [INSPIRE].

  35. M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark matter in models with a light Z’, JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].

    Article  ADS  Google Scholar 

  36. I.M. Shoemaker and L. Vecchi, Unitarity and Monojet Bounds on Models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].

    ADS  Google Scholar 

  37. H. An, X. Ji and L.-T. Wang, Light Dark Matter and Z Dark Force at Colliders, JHEP 07 (2012) 182 [arXiv:1202.2894] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron Bounds on the Dark Matter Direct Detection Cross-Section for Vector Mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].

    Article  ADS  Google Scholar 

  39. G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, arXiv:1307.2253 [INSPIRE].

  40. R.C. Cotta, A. Rajaraman, T.M.P. Tait and A.M. Wijangco, Particle Physics Implications and Constraints on Dark Matter Interpretations of the CDMS Signal, arXiv:1305.6609 [INSPIRE].

  41. S. Profumo, W. Shepherd and T. Tait, The Pitfalls of Dark Crossings, arXiv:1307.6277 [INSPIRE].

  42. Y. Gershtein, F. Petriello, S. Quackenbush and K.M. Zurek, Discovering hidden sectors with mono-photon Z′ searches, Phys. Rev. D 78 (2008) 095002 [arXiv:0809.2849] [INSPIRE].

    ADS  Google Scholar 

  43. F.J. Petriello, S. Quackenbush and K.M. Zurek, The invisible Z at the CERN LHC, Phys. Rev. D 77 (2008) 115020 [arXiv:0803.4005] [INSPIRE].

    ADS  Google Scholar 

  44. P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter, arXiv:1003.1912 [INSPIRE].

  45. M. Garny, A. Ibarra, M. Pato and S. Vogl, Closing in on mass-degenerate dark matter scenarios with antiprotons and direct detection, JCAP 11 (2012) 017 [arXiv:1207.1431] [INSPIRE].

    Article  ADS  Google Scholar 

  46. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  47. CMS collaboration, Search for supersymmetry in final states with missing transverse energy and 0, 1, 2, 3, or at least 4 b-quark jets in 8 TeV pp collisions using the variable AlphaT, CMS-PAS-SUS-12-028.

  48. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  49. N.D. Christensen and C. Duhr, FeynRules - Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    Article  ADS  Google Scholar 

  50. W. Beenakker, R. Hopker and M. Spira, PROSPINO: A program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].

  51. J.F. Nieves and P.B. Pal, Generalized Fierz identities, Am. J. Phys. 72 (2004) 1100 [hep-ph/0306087] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. M. Freytsis and Z. Ligeti, On dark matter models with uniquely spin-dependent detection possibilities, Phys. Rev. D 83 (2011) 115009 [arXiv:1012.5317] [INSPIRE].

    ADS  Google Scholar 

  53. P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke and E.A. Baltz, DarkSUSY: Computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].

    Article  ADS  Google Scholar 

  54. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  55. XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [arXiv:1104.3088] [INSPIRE].

    Article  ADS  Google Scholar 

  56. XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross ections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301 arXiv:1301.6620] [INSPIRE].

    Article  ADS  Google Scholar 

  57. PICASSO collaboration, S. Archambault et al., Constraints on Low-Mass WIMP Interactions on 19 F from PICASSO, Phys. Lett. B 711 (2012) 153 [arXiv:1202.1240] [INSPIRE].

    Article  ADS  Google Scholar 

  58. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs3.1: a program for calculating dark matter observables, arXiv:1305.0237 [INSPIRE].

  59. S. Chang, R. Edezhath, J. Hutchinson and M. Luty, Effective WIMPs, arXiv:1307.8120 [INSPIRE].

  60. H. An, L.-T. Wang and H. Zhang, Dark matter with t-channel mediator: a simple step beyond contact interaction, arXiv:1308.0592 [INSPIRE].

  61. Y. Bai and J. Berger, Fermion Portal Dark Matter, arXiv:1308.0612 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony DiFranzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiFranzo, A., Nagao, K.I., Rajaraman, A. et al. Simplified models for dark matter interacting with quarks. J. High Energ. Phys. 2013, 14 (2013). https://doi.org/10.1007/JHEP11(2013)014

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)014

Keywords

Navigation