Skip to main content
Log in

Bjorken flow, plasma instabilities, and thermalization

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

At asymptotically high energies, thermalization in heavy ion collisions can be described via weak-coupling QCD. We present a complete treatment of how thermalization proceeds, at the parametric weak-coupling level. We show that plasma instabilities dominate the dynamics, from immediately after the collision until well after the plasma becomes nearly in equilibrium. Initially they drive the system close to isotropy, but Bjorken expansion and increasing diluteness makes the system again become more anisotropic. At time \( \tau \sim {\alpha^{{\frac{{ - 12}}{5}}}}Q_s^{{ - 1}} \) the dynamics become dominated by a nearly-thermal bath; and at time \( \tau \sim {\alpha^{{\frac{{ - 5}}{2}}}}Q_s^{{ - 1}} \) the bath comes to dominate the energy density, completing thermalization. After this time there is a nearly isotropic and thermal Quark-Gluon Plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. PHENIX Collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].

    ADS  Google Scholar 

  2. B. Back, M. Baker, M. Ballintijn, D. Barton, B. Becker, et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [nucl-ex/0410022] [INSPIRE].

    ADS  Google Scholar 

  3. BRAHMS Collaboration, I. Arsene et al., Quark gluon plasma and color glass condensate at RHIC? the perspective from the BRAHMS experiment, Nucl. Phys. A 757 (2005) 1 [nucl-ex/0410020] [INSPIRE].

    ADS  Google Scholar 

  4. STAR Collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaborations critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].

    ADS  Google Scholar 

  5. The ALICE Collaboration, K. Aamodt et al., Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D. Teaney, J. Lauret and E.V. Shuryak, Flow at the SPS and RHIC as a quark gluon plasma signature, Phys. Rev. Lett. 86 (2001) 4783 [nucl-th/0011058] [INSPIRE].

    Article  ADS  Google Scholar 

  7. P. Huovinen, P. Kolb, U.W. Heinz, P. Ruuskanen and S. Voloshin, Radial and elliptic flow at RHIC: further predictions, Phys. Lett. B 503 (2001) 58 [hep-ph/0101136] [INSPIRE].

    ADS  Google Scholar 

  8. P. Kolb, U.W. Heinz, P. Huovinen, K. Eskola and K. Tuominen, Centrality dependence of multiplicity, transverse energy and elliptic flow from hydrodynamics, Nucl. Phys. A 696 (2001) 197 [hep-ph/0103234] [INSPIRE].

    ADS  Google Scholar 

  9. T. Hirano and K. Tsuda, Collective flow and two pion correlations from a relativistic hydrodynamic model with early chemical freezeout, Phys. Rev. C 66 (2002) 054905 [nucl-th/0205043] [INSPIRE].

    ADS  Google Scholar 

  10. P.F. Kolb and R. Rapp, Transverse flow and hadrochemistry in Au + Au collisions at \( \sqrt {{{S_{{NN}}}}} = 200\;GeV \), Phys. Rev. C 67 (2003) 044903 [hep-ph/0210222] [INSPIRE].

    ADS  Google Scholar 

  11. P. Romatschke and U. Romatschke, Viscosity information from relativistic nuclear collisions: how perfect is the fluid observed at RHIC?, Phys. Rev. Lett. 99 (2007) 172301 [arXiv:0706.1522] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Luzum and P. Romatschke, Conformal relativistic viscous hydrodynamics: applications to RHIC results at \( \sqrt {{{S_{{NN}}}}} = 200\;GeV \), Phys. Rev. C 78 (2008) 034915 [Erratum-ibid. C 79 (2009) 039903] [arXiv:0804.4015] [INSPIRE].

    ADS  Google Scholar 

  13. K. Dusling and D. Teaney, Simulating elliptic flow with viscous hydrodynamics, Phys. Rev. C 77 (2008) 034905 [arXiv:0710.5932] [INSPIRE].

    ADS  Google Scholar 

  14. H. Song and U.W. Heinz, Causal viscous hydrodynamics in 2 + 1 dimensions for relativistic heavy-ion collisions, Phys. Rev. C 77 (2008) 064901 [arXiv:0712.3715] [INSPIRE].

    ADS  Google Scholar 

  15. E. Iancu and R. Venugopalan, The color glass condensate and high-energy scattering in QCD, hep-ph/0303204 [INSPIRE].

  16. F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The color glass condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].

    Article  ADS  Google Scholar 

  17. L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].

    ADS  Google Scholar 

  18. L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].

    ADS  Google Scholar 

  19. J. Jalilian-Marian, A. Kovner, L.D. McLerran and H. Weigert, The intrinsic glue distribution at very small x, Phys. Rev. D 55 (1997) 5414 [hep-ph/9606337] [INSPIRE].

    ADS  Google Scholar 

  20. A. Kovner, L.D. McLerran and H. Weigert, Gluon production from nonabelian Weizsacker-Williams fields in nucleus-nucleus collisions, Phys. Rev. D 52 (1995) 6231 [hep-ph/9502289] [INSPIRE].

    ADS  Google Scholar 

  21. A. Krasnitz and R. Venugopalan, The initial energy density of gluons produced in very high-energy nuclear collisions, Phys. Rev. Lett. 84 (2000) 4309 [hep-ph/9909203] [INSPIRE].

    Article  ADS  Google Scholar 

  22. T. Lappi and L. McLerran, Some features of the glasma, Nucl. Phys. A 772 (2006) 200 [hep-ph/0602189] [INSPIRE].

    ADS  Google Scholar 

  23. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: towards the high density regime, Phys. Rev. D 59 (1999) 014014 [hep-ph/9706377] [INSPIRE].

    ADS  Google Scholar 

  24. Y.V. Kovchegov, Small x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].

    ADS  Google Scholar 

  25. E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

    ADS  Google Scholar 

  26. R. Baier, A.H. Mueller, D. Schiff and D. Son, ’Bottom upthermalization in heavy ion collisions, Phys. Lett. B 502 (2001) 51 [hep-ph/0009237] [INSPIRE].

    ADS  Google Scholar 

  27. P.B. Arnold, J. Lenaghan and G.D. Moore, QCD plasma instabilities and bottom up thermalization, JHEP 08 (2003) 002 [hep-ph/0307325] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. Mrowczynski, Stream instabilities of the quark-gluon plasma, Phys. Lett. B 214 (1988) 587 [INSPIRE].

    ADS  Google Scholar 

  29. S. Mrowczynski, Plasma instability at the initial stage of ultrarelativistic heavy ion collisions, Phys. Lett. B 314 (1993) 118 [INSPIRE].

    ADS  Google Scholar 

  30. S. Mrowczynski and M.H. Thoma, Hard loop approach to anisotropic systems, Phys. Rev. D 62 (2000) 036011 [hep-ph/0001164] [INSPIRE].

    ADS  Google Scholar 

  31. P. Romatschke and M. Strickland, Collective modes of an anisotropic quark gluon plasma, Phys. Rev. D 68 (2003) 036004 [hep-ph/0304092] [INSPIRE].

    ADS  Google Scholar 

  32. P. Romatschke and M. Strickland, Collective modes of an anisotropic quark-gluon plasma II, Phys. Rev. D 70 (2004) 116006 [hep-ph/0406188] [INSPIRE].

    ADS  Google Scholar 

  33. D. Bödeker, The impact of QCD plasma instabilities on bottom-up thermalization, JHEP 10 (2005) 092 [hep-ph/0508223] [INSPIRE].

    Article  Google Scholar 

  34. P.B. Arnold and G.D. Moore, Non-Abelian plasma instabilities for extreme anisotropy, Phys. Rev. D 76 (2007) 045009 [arXiv:0706.0490] [INSPIRE].

    ADS  Google Scholar 

  35. P. Romatschke and R. Venugopalan, Collective non-abelian instabilities in a melting color glass condensate, Phys. Rev. Lett. 96 (2006) 062302 [hep-ph/0510121] [INSPIRE].

    Article  ADS  Google Scholar 

  36. P. Romatschke and R. Venugopalan, The unstable glasma, Phys. Rev. D 74 (2006) 045011 [hep-ph/0605045] [INSPIRE].

    ADS  Google Scholar 

  37. P. Romatschke and A. Rebhan, Plasma instabilities in an anisotropically expanding geometry, Phys. Rev. Lett. 97 (2006) 252301 [hep-ph/0605064] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Rebhan, M. Strickland and M. Attems, Instabilities of an anisotropically expanding non-abelian plasma: 1d + 3v discretized hard-loop simulations, Phys. Rev. D 78 (2008) 045023 [arXiv:0802.1714] [INSPIRE].

    ADS  Google Scholar 

  39. A. Rebhan and D. Steineder, Collective modes and instabilities in anisotropically expanding ultarelativistic plasmas, Phys. Rev. D 81 (2010) 085044 [arXiv:0912.5383] [INSPIRE].

    ADS  Google Scholar 

  40. A. Kurkela and G.D. Moore, Thermalization in weakly coupled nonabelian plasmas, arXiv:1107.5050 [INSPIRE].

  41. J.-P. Blaizot, F. Gelis, J. Liao, L. McLerran and R. Venugopalan, Bose-Einstein condensation and thermalization of the quark gluon plasma, arXiv:1107.5296 [INSPIRE].

  42. M. Asakawa, S. Bass and B. Müller, Anomalous viscosity of an expanding quark-gluon plasma, Phys. Rev. Lett. 96 (2006) 252301 [hep-ph/0603092] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Asakawa, S.A. Bass and B. Müller, Anomalous transport processes in anisotropically expanding quark-gluon plasmas, Prog. Theor. Phys. 116 (2007) 725 [hep-ph/0608270] [INSPIRE].

    Article  ADS  Google Scholar 

  44. P.B. Arnold and J. Lenaghan, The abelianization of QCD plasma instabilities, Phys. Rev. D 70 (2004) 114007 [hep-ph/0408052] [INSPIRE].

    ADS  Google Scholar 

  45. E.S. Weibel, Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution, Phys. Rev. Lett. 2 (1959) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  46. N. Nielsen and P. Olesen, An unstable Yang-Mills field mode, Nucl. Phys. B 144 (1978) 376 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. P.B. Arnold, C. Dogan and G.D. Moore, The bulk viscosity of high-temperature QCD, Phys. Rev. D 74 (2006) 085021 [hep-ph/0608012] [INSPIRE].

    ADS  Google Scholar 

  48. D. Polarski and A.A. Starobinsky, Semiclassicality and decoherence of cosmological perturbations, Class. Quant. Grav. 13 (1996) 377 [gr-qc/9504030] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. S. Khlebnikov and I. Tkachev, Classical decay of inflaton, Phys. Rev. Lett. 77 (1996) 219 [INSPIRE].

    Article  ADS  Google Scholar 

  50. A. Rebhan, P. Romatschke and M. Strickland, Hard-loop dynamics of non-abelian plasma instabilities, Phys. Rev. Lett. 94 (2005) 102303 [hep-ph/0412016] [INSPIRE].

    Article  ADS  Google Scholar 

  51. D. Bödeker and K. Rummukainen, Non-abelian plasma instabilities for strong anisotropy, JHEP 07 (2007) 022 [arXiv:0705.0180] [INSPIRE].

    Article  Google Scholar 

  52. R. Baier, A.H. Mueller, D. Schiff and D. Son, Does parton saturation at high density explain hadron multiplicities at RHIC?, Phys. Lett. B 539 (2002) 46 [hep-ph/0204211] [INSPIRE].

    ADS  Google Scholar 

  53. R. Baier, A. Mueller, D. Schiff and D. Son, Does parton saturation at high density explain hadron multiplicities at LHC?, arXiv:1103.1259 [INSPIRE].

  54. P.B. Arnold and C. Dogan, QCD splitting/joining functions at finite temperature in the deep LPM regime, Phys. Rev. D 78 (2008) 065008 [arXiv:0804.3359] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksi Kurkela.

Additional information

ArXiv ePrint: 1108.4684

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurkela, A., Moore, G.D. Bjorken flow, plasma instabilities, and thermalization. J. High Energ. Phys. 2011, 120 (2011). https://doi.org/10.1007/JHEP11(2011)120

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)120

Keywords

Navigation