Skip to main content
Log in

Classical stability of the Galileon

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the classical equations of motion for a single Galileon field with generic parameters in the presence of non-relativistic sources. We introduce the concept of absolute stability of a theory: if one can show that a field at a single point — like infinity for instance — in spacetime is stable, then stability of the field over the rest of spacetime is guaranteed for any positive energy source configuration. The Dvali-Gabadadze-Porrati (DGP) model is stable in this manner, and previous studies of spherically symmetric solutions suggest that certain classes of the single field Galileon (of which the DGP model is a subclass) may have this property as well. We find, however, that when general solutions are considered this is not the case. In fact, when considering generic solutions there are no choices of free parameters in the Galileon theory that will lead to absolute stability except the DGP choice. Our analysis indicates that the DGP model is an exceptional choice among the large class of possible single field Galileon theories. This implies that if general solutions (non-spherically symmetric) exist they may be unstable. Given astrophysical motivation for the Galileon, further investigation into these unstable solutions may prove fruitful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. F.P. Silva and K. Koyama, Self-accelerating universe in Galileon cosmology, Phys. Rev. D 80 (2009) 121301 [arXiv:0909.4538] [INSPIRE].

    ADS  Google Scholar 

  3. T. Kobayashi, Cosmic expansion and growth histories in Galileon scalar-tensor models of dark energy, Phys. Rev. D 81 (2010) 103533 [arXiv:1003.3281] [INSPIRE].

    ADS  Google Scholar 

  4. A. De Felice and S. Tsujikawa, Cosmology of a covariant Galileon field, Phys. Rev. Lett. 105 (2010) 111301 [arXiv:1007.2700] [INSPIRE].

    Article  ADS  Google Scholar 

  5. N. Chow and J. Khoury, Galileon cosmology, Phys. Rev. D 80 (2009) 024037 [arXiv:0905.1325] [INSPIRE].

    ADS  Google Scholar 

  6. N. Agarwal, R. Bean, J. Khoury and M. Trodden, Cascading cosmology, Phys. Rev. D 81 (2010) 084020 [arXiv:0912.3798] [INSPIRE].

    ADS  Google Scholar 

  7. R. Gannouji and M. Sami, Galileon gravity and its relevance to late time cosmic acceleration, Phys. Rev. D 82 (2010) 024011 [arXiv:1004.2808] [INSPIRE].

    ADS  Google Scholar 

  8. C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [INSPIRE].

    ADS  Google Scholar 

  9. C. Deffayet, S. Deser and G. Esposito-Farese, Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors, Phys. Rev. D 80 (2009) 064015 [arXiv:0906.1967] [INSPIRE].

    ADS  Google Scholar 

  10. P. Creminelli, A. Nicolis and E. Trincherini, Galilean genesis: an alternative to inflation, JCAP 11 (2010) 021 [arXiv:1007.0027] [INSPIRE].

    ADS  Google Scholar 

  11. G. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP 09 (2003) 029 [hep-th/0303116] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. C. de Rham and G. Gabadadze, Selftuned massive spin-2, Phys. Lett. B 693 (2010) 334 [arXiv:1006.4367] [INSPIRE].

    ADS  Google Scholar 

  14. J. Khoury, J.-L. Lehners and B.A. Ovrut, Supersymmetric Galileons, Phys. Rev. D 84 (2011) 043521 [arXiv:1103.0003] [INSPIRE].

    ADS  Google Scholar 

  15. K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].

    ADS  Google Scholar 

  16. C. Deffayet, S. Deser and G. Esposito-Farese, Arbitrary p-form Galileons, Phys. Rev. D 82 (2010) 061501 [arXiv:1007.5278] [INSPIRE].

    ADS  Google Scholar 

  17. A. Nicolis and R. Rattazzi, Classical and quantum consistency of the DGP model, JHEP 06 (2004) 059 [hep-th/0404159] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Endlich, K. Hinterbichler, L. Hui, A. Nicolis and J. Wang, Derricks theorem beyond a potential, JHEP 05 (2011) 073 [arXiv:1002.4873] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junpu Wang.

Additional information

ArXiv ePrint: 1106.1659

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endlich, S., Wang, J. Classical stability of the Galileon. J. High Energ. Phys. 2011, 65 (2011). https://doi.org/10.1007/JHEP11(2011)065

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)065

Keywords

Navigation