Skip to main content
Log in

Low scale flavor gauge symmetries

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the possibility of gauging the Standard Model flavor group. Anomaly cancellation leads to the addition of fermions whose mass is inversely proportional to the known fermion masses. In this case all flavor violating effects turn out to be controlled roughly by the Standard Model Yukawa, suppressing transitions for the light generations. Due to the inverted hierarchy the scale of new gauge flavor bosons could be as low as the electroweak scale without violating any existing bound but accessible at the Tevatron and the LHC. The mechanism of flavor protection potentially provides an alternative to Minimal Flavor Violation, with flavor violating effects suppressed by hierarchy of scales rather than couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B 188 (1987) 99 [SPIRES].

    ADS  Google Scholar 

  2. L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [SPIRES].

    Article  ADS  Google Scholar 

  3. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavour violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [SPIRES].

    Article  ADS  Google Scholar 

  4. V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [SPIRES].

    Article  ADS  Google Scholar 

  5. S.M. Barr and A. Zee, Calculating the electron mass in terms of measured quantities, Phys. Rev. D 17 (1978) 1854 [SPIRES].

    ADS  Google Scholar 

  6. F. Wilczek and A. Zee, Horizontal Interaction and Weak Mixing Angles, Phys. Rev. Lett. 42 (1979) 421 [SPIRES].

    Article  ADS  Google Scholar 

  7. C.L. Ong, Adding a horizontal gauge symmetry to the Weinberg-Salam model: an eight quark model, Phys. Rev. D 19 (1979) 2738 [SPIRES].

    ADS  Google Scholar 

  8. J. Chakrabarti, Horizontal gauge symmetry and a new picture for the B quark, Phys. Rev. D 20 (1979) 2411 [SPIRES].

    ADS  Google Scholar 

  9. T. Maehara and T. Yanagida, Gauge symmetry of horizontal flavor, Prog. Theor. Phys. 61 (1979) 1434 [SPIRES].

    Article  ADS  Google Scholar 

  10. A. Davidson, M. Koca and K.C. Wali, U(1) as the minimal horizontal gauge symmetry, Phys. Rev. Lett. 43 (1979) 92 [SPIRES].

    Article  ADS  Google Scholar 

  11. A. Davidson, M. Koca and K.C. Wali, Horizontal gauge symmetry as a natural CP-violation source at the two generation level, Phys. Lett. B 86 (1979) 47 [SPIRES].

    ADS  Google Scholar 

  12. D.d. Wu, Multi-Higgs Doublets And A Model To Calculate KM Matrix Using Horizontal Gauge, High Energy Phys. Nucl. Phys. 4 (1980) 455 [SPIRES].

    Google Scholar 

  13. T. Yanagida, Horizontal symmetry and mass of the top quark, Phys. Rev. D 20 (1979) 2986 [SPIRES].

    ADS  Google Scholar 

  14. A. Davidson and K.C. Wali, Horizontal QFD approach to the fermion mass spectrum, Phys. Rev. D 21 (1980) 787 [SPIRES].

    ADS  Google Scholar 

  15. N. Arkani-Hamed, L.J. Hall, D. Tucker-Smith and N. Weiner, Flavor at the TeV scale with extra dimensions, Phys. Rev. D 61 (2000) 116003 [hep-ph/9909326] [SPIRES].

    ADS  Google Scholar 

  16. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Cacciapaglia et al., A GIM Mechanism from Extra Dimensions, JHEP 04 (2008) 006 [arXiv:0709.1714] [SPIRES].

    Article  ADS  Google Scholar 

  18. Z.G. Berezhiani and J .L. Chkareuli, Quark-leptonic families in a model with SU(5) × SU(3) symmetry (in russian), Sov. J. Nucl. Phys. 37 (1983) 618 [Yad. Fiz. 37 (1983) 1043] [SPIRES].

    Google Scholar 

  19. Z.G. Berezhiani, The Weak Mixing Angles in Gauge Models with Horizontal Symmetry: A New A pproach to Quark and Lepton Masses, Phys. Lett. B 129 (1983) 99 [SPIRES].

    ADS  Google Scholar 

  20. Z.G. Berezhiani and M.Y. Khlopov, The theory of broken gauge symmetry of generations, Sov. J. Nucl. Phys. 51 (1990) 739 [Yad. Fiz. 51 (1990) 1157] [SPIRES].

    Google Scholar 

  21. G.D. Kribs, Rationalizing right-handed neutrinos, Phys. Rev. D 69 (2004) 111701 [hep-ph/0304256] [SPIRES].

    ADS  Google Scholar 

  22. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  23. CDF collaboration, A.A. Affolder et al., Search for a fourth-generation quark more massive than the Z0 boson in \( p\overline p \) collisions at \( \sqrt {s} = 1.8\,TeV \), Phys. Rev. Lett. 84 (2000) 835 [hep-ex/9909027] [SPIRES].

    Article  ADS  Google Scholar 

  24. G. Cacciapaglia, A. Deandrea, D. Harada and Y. Okada, Bounds and Decays of New Heavy Vector-like Top Partners, arXiv:1007.2933 [SPIRES].

  25. CDF collaboration, T. Aaltonen et al., Search for New Particles Leading to Z + jets Final States in \( p\overline p \) Collisions at \( \sqrt {s} = 1.96 - TeV \), Phys. Rev. D 76 (2007) 072006 [arXiv:0706.3264] [SPIRES].

    ADS  Google Scholar 

  26. CDF collaboration, Search for heavy bottom-like chiral quarks decaying to an electron or muon and jets, CDF/PHYS/EXO/PUBLIC/10243, July 28, 2010.

  27. D0 collaboration, S. Abachi et al., Top quark search with the DØ 1992 -1993 data sample, Phys. Rev. D 52 (1995) 4877 [SPIRES].

    ADS  Google Scholar 

  28. D0 collaboration, S. Abachi et al., Search for a fourth generation charge -1/3 quark via flavor changing neutral current decay, Phys. Rev. Lett. 78 (1997) 3818 [hep-ex/9611021] [SPIRES].

    Article  ADS  Google Scholar 

  29. B. Mukhopadhyaya and D.P. Roy, Tevatron mass limits for heavy quarks decaying via flavor changing neutral current, Phys. Rev. D 48 (1993) 2105 [hep-ph/9210279] [SPIRES].

    ADS  Google Scholar 

  30. CDF and D0 collaboration, T.E.W. Group, Combination of CDF and D0 Measurements of the Single Top Production Cross Section, arXiv:0908.2171 [SPIRES].

  31. B. Grinstein, R.P. Springer and M.B. Wise, Strong interaction effects in weak radiative anti-B meson decay, Nucl. Phys. B 339 (1990) 269 [SPIRES].

    Article  ADS  Google Scholar 

  32. CDF collaboration, Search for Heavy Top t′ → Wq in Lepton Plus Jets Events in \( \int {\mathcal{L}dt = 4.6f{b^{ - 1}}} \), CDF/PUB/TOP/PUBLIC/10110, March 10, 2010.

  33. M.B. Gavela et al., CP violation induced by Penguin diagrams and the neutron electric dipole moment, Phys. Lett. B 109 (1982) 215 [SPIRES].

    ADS  Google Scholar 

  34. M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  35. J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [SPIRES].

    Article  ADS  Google Scholar 

  36. K. Kumar, W. Shepherd, T.M.P. Tait and R. Vega-Morales, Beautiful Mirrors at the LHC, JHEP 08 (2010) 052 [arXiv:1004.4895] [SPIRES].

    Article  ADS  Google Scholar 

  37. CDF and D0 collaboration, N. Goldschmidt et al., Searches for tt Resonances at the Tevatron, presentation at ICHEP, July 23, 2010.

  38. E. Salvioni, G. Villadoro and F. Zwirner, Minimal Z’ models: present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [SPIRES].

    Article  ADS  Google Scholar 

  39. E. Salvioni, A. Strumia, G. Villadoro and F. Zwirner, Non-universal minimal Z’ models: present bounds and early LHC reach, JHEP 03 (2010) 010 [arXiv:0911.1450] [SPIRES].

    Article  ADS  Google Scholar 

  40. G. Brooijmans et al., New Physics at the LHC. A Les Houches Report: Physics at TeV Colliders 2009 -New Physics Working Group, arXiv:1005.1229 [SPIRES].

  41. UTfit collaboration, M. Bona et al., Model-independent constraints on Δ F=2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [SPIRES].

    Article  ADS  Google Scholar 

  42. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/Composite Phenomenology Simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [SPIRES].

    Article  ADS  Google Scholar 

  43. M.E. Albrecht, T. Feldmann and T. Mannel, Goldstone Bosons in Effective Theories with Spontaneously Broken Flavour Symmetry, JHEP 10 (2010) 089 [arXiv:1002.4798] [SPIRES].

    Article  Google Scholar 

  44. M.E. Albrecht, Two Approaches towards the Flavour Puzzle, Ph.D. Thesis, TU Munich, Aug. 2010.

  45. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  46. GFITTERcollaboration, http://gfitter.desy.de/GOblique/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Redi.

Additional information

ArXiv ePrint:1009.2049

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinstein, B., Redi, M. & Villadoro, G. Low scale flavor gauge symmetries. J. High Energ. Phys. 2010, 67 (2010). https://doi.org/10.1007/JHEP11(2010)067

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)067

Keywords

Navigation