Abstract
A definition of soft breaking of BRST symmetry in the field-antifield formalism is proposed, valid for general gauge theories and arbitrary gauge fixing. The Ward identities for the generating functionals of Green’s functions are derived, and their gauge dependence is investigated. We discuss the Gribov-Zwanziger action to the one-parameter family of R ξ gauges. It is argued that gauge theories with a soft breaking of BRST symmetry are inconsistent.
Similar content being viewed by others
References
C. Becchi, A. Rouet and R. Stora, Renormalization of the abelian Higgs-Kibble model, Commun. Math. Phys. 42 (1975) 127 [SPIRES].
I.V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism, arXiv:0812.0580 [SPIRES].
L.D. Faddeev and A.A. Slavnov, Gauge fields: Introduction to quantum theory, Benjamin/Cummings (1980).
M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton U.S.A. (1992).
S. Weinberg, The quantum theory of fields, Vol. II, Cambridge University Press, Cambridge U.K. (1996).
D.M. Gitman and I.V. Tyutin, Quantization of fields with constraints, Springer (1990).
M.A.L. Capri et al., A remark on the BRST symmetry in the Gribov-Zwanziger theory, Phys. Rev. D 82 (2010) 105019 [arXiv:1009.4135] [SPIRES].
L. Baulieu et al., Renormalizability of a quark-gluon model with soft BRST breaking in the infrared region, Eur. Phys. J. C 66 (2010) 451 [arXiv:0901.3158] [SPIRES].
D. Dudal, S.P. Sorella, N. Vandersickel and H. Verschelde, Gribov no-pole condition, Zwanziger horizon function, Kugo-Ojima confinement criterion, boundary conditions, BRST breaking and all that, Phys. Rev. D 79 (2009) 121701 [arXiv:0904.0641] [SPIRES].
L. Baulieu and S.P. Sorella, Soft breaking of BRST invariance for introducing non-perturbative infrared effects in a local and renormalizable way, Phys. Lett. B 671 (2009) 481 [arXiv:0808.1356] [SPIRES].
M.A.L. Capri et al., Renormalizability of the linearly broken formulation of the BRST symmetry in presence of the Gribov horizon in Landau gauge Euclidean Yang-Mills theories, Phys. Rev. D 83 (2011) 105001 [arXiv:1102.5695] [SPIRES].
D. Dudal, S.P. Sorella and N. Vandersickel, The dynamical origin of the refinement of the Gribov-Zwanziger theory, arXiv:1105.3371 [SPIRES].
D. Zwanziger, Action from the Gribov horizon, Nucl. Phys. B 321 (1989) 591 [SPIRES].
D. Zwanziger, Local and renormalizable action from the Gribov horizon, Nucl. Phys. B 323 (1989) 513 [SPIRES].
V.N. Gribov, Quantization of nonabelian gauge theories, Nucl. Phys. B 139 (1978) 1 [SPIRES].
P.M. Lavrov and I.V. Tyutin. On the structure of renormalization in gauge theories (in Russian), Sov. J. Nucl. Phys. 34 (1981) 156 [Yad. Fiz. 34 (1981) 277] [SPIRES].
P.M. Lavrov and I.V. Tyutin. On the generating functional for the vertex functions in Yang-Mills theories (in Russian), Sov. J. Nucl. Phys. 34 (1981) 474 [Yad. Fiz. 34 (1981) 850] [SPIRES].
I.A. Batalin and G.A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B 102 (1981) 27 [SPIRES].
I.A. Batalin and G.A. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983) 2567 [SPIRES].
B.S. DeWitt, Dynamical theory of groups and fields, Gordon and Breach, New York U.S.A. (1965).
G. Leibbrandt, Introduction to the technique of the dimensional regularization, Rev. Mod. Phys. 47 (1975) 849 [SPIRES].
B.L. Voronov, P.M. Lavrov and I.V. Tyutin, Canonical transformations and gauge dependence in general gauge theories (in Russian), Sov. J. Nucl. Phys. 36 (1982) 292 [Yad. Fiz. 36 (1982) 498] [SPIRES].
R.F. Sobreiro and S.P. Sorella, A study of the Gribov copies in linear covariant gauges in Euclidean Yang-Mills theories, JHEP 06 (2005) 054 [arXiv:0506165] [SPIRES].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1108.4820
Rights and permissions
About this article
Cite this article
Lavrov, P., Lechtenfeld, O. & Reshetnyak, A. Is soft breaking of BRST symmetry consistent?. J. High Energ. Phys. 2011, 43 (2011). https://doi.org/10.1007/JHEP10(2011)043
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2011)043