Skip to main content
Log in

Is soft breaking of BRST symmetry consistent?

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A definition of soft breaking of BRST symmetry in the field-antifield formalism is proposed, valid for general gauge theories and arbitrary gauge fixing. The Ward identities for the generating functionals of Green’s functions are derived, and their gauge dependence is investigated. We discuss the Gribov-Zwanziger action to the one-parameter family of R ξ gauges. It is argued that gauge theories with a soft breaking of BRST symmetry are inconsistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Becchi, A. Rouet and R. Stora, Renormalization of the abelian Higgs-Kibble model, Commun. Math. Phys. 42 (1975) 127 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. I.V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism, arXiv:0812.0580 [SPIRES].

  3. L.D. Faddeev and A.A. Slavnov, Gauge fields: Introduction to quantum theory, Benjamin/Cummings (1980).

  4. M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton U.S.A. (1992).

    MATH  Google Scholar 

  5. S. Weinberg, The quantum theory of fields, Vol. II, Cambridge University Press, Cambridge U.K. (1996).

    Google Scholar 

  6. D.M. Gitman and I.V. Tyutin, Quantization of fields with constraints, Springer (1990).

  7. M.A.L. Capri et al., A remark on the BRST symmetry in the Gribov-Zwanziger theory, Phys. Rev. D 82 (2010) 105019 [arXiv:1009.4135] [SPIRES].

    Article  ADS  Google Scholar 

  8. L. Baulieu et al., Renormalizability of a quark-gluon model with soft BRST breaking in the infrared region, Eur. Phys. J. C 66 (2010) 451 [arXiv:0901.3158] [SPIRES].

    Article  ADS  Google Scholar 

  9. D. Dudal, S.P. Sorella, N. Vandersickel and H. Verschelde, Gribov no-pole condition, Zwanziger horizon function, Kugo-Ojima confinement criterion, boundary conditions, BRST breaking and all that, Phys. Rev. D 79 (2009) 121701 [arXiv:0904.0641] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. L. Baulieu and S.P. Sorella, Soft breaking of BRST invariance for introducing non-perturbative infrared effects in a local and renormalizable way, Phys. Lett. B 671 (2009) 481 [arXiv:0808.1356] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. M.A.L. Capri et al., Renormalizability of the linearly broken formulation of the BRST symmetry in presence of the Gribov horizon in Landau gauge Euclidean Yang-Mills theories, Phys. Rev. D 83 (2011) 105001 [arXiv:1102.5695] [SPIRES].

    Article  ADS  Google Scholar 

  12. D. Dudal, S.P. Sorella and N. Vandersickel, The dynamical origin of the refinement of the Gribov-Zwanziger theory, arXiv:1105.3371 [SPIRES].

  13. D. Zwanziger, Action from the Gribov horizon, Nucl. Phys. B 321 (1989) 591 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. D. Zwanziger, Local and renormalizable action from the Gribov horizon, Nucl. Phys. B 323 (1989) 513 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. V.N. Gribov, Quantization of nonabelian gauge theories, Nucl. Phys. B 139 (1978) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. P.M. Lavrov and I.V. Tyutin. On the structure of renormalization in gauge theories (in Russian), Sov. J. Nucl. Phys. 34 (1981) 156 [Yad. Fiz. 34 (1981) 277] [SPIRES].

    MathSciNet  Google Scholar 

  17. P.M. Lavrov and I.V. Tyutin. On the generating functional for the vertex functions in Yang-Mills theories (in Russian), Sov. J. Nucl. Phys. 34 (1981) 474 [Yad. Fiz. 34 (1981) 850] [SPIRES].

    MathSciNet  Google Scholar 

  18. I.A. Batalin and G.A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B 102 (1981) 27 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. I.A. Batalin and G.A. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983) 2567 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. B.S. DeWitt, Dynamical theory of groups and fields, Gordon and Breach, New York U.S.A. (1965).

    MATH  Google Scholar 

  21. G. Leibbrandt, Introduction to the technique of the dimensional regularization, Rev. Mod. Phys. 47 (1975) 849 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. B.L. Voronov, P.M. Lavrov and I.V. Tyutin, Canonical transformations and gauge dependence in general gauge theories (in Russian), Sov. J. Nucl. Phys. 36 (1982) 292 [Yad. Fiz. 36 (1982) 498] [SPIRES].

    MathSciNet  Google Scholar 

  23. R.F. Sobreiro and S.P. Sorella, A study of the Gribov copies in linear covariant gauges in Euclidean Yang-Mills theories, JHEP 06 (2005) 054 [arXiv:0506165] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Lechtenfeld.

Additional information

ArXiv ePrint: 1108.4820

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrov, P., Lechtenfeld, O. & Reshetnyak, A. Is soft breaking of BRST symmetry consistent?. J. High Energ. Phys. 2011, 43 (2011). https://doi.org/10.1007/JHEP10(2011)043

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)043

Keywords