Skip to main content
Log in

EVH black holes, AdS3 throats and EVH/CFT proposal

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Within class of generic black holes there are extremal black holes (with vanishing Hawking temperature T) and vanishing horizon area A h , but with finite A h /T ratio, the Extremal Vanishing Horizon (EVH) black holes. We study the near horizon limit of a four dimensional EVH black hole solution to a generic (gauged) Einstein-Maxwell dilaton theory and show that in the near horizon limit they develop a throat which is a pinching orbifold limit of AdS3. This is an extension of the well known result for extremal black holes the near horizon limit of which contains an AdS2 throat. We show that in the near EVH near horizon limit the pinching AdS3 factor turns to a pinching BTZ black hole and that this near horizon limit is indeed a decoupling limit. We argue that the pinching AdS3 or BTZ orbifold is resolved if the near horizon limit is accompanied by taking the 4d Newton constant G 4 to zero such that the Bekenstein-Hawking entropy S = A h /(4G 4) remains finite. We propose that in this limit the near horizon EVH black hole is dual to a 2d CFT. We provide pieces of evidence in support of the EVH/CFT correspondence and comment on its connection to the Kerr/CFT proposal and speculation show the EVH/CFT maybe used to study generic e.g. Schwarzchild-type black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. I. Mandal and A. Sen, Black Hole Microstate Counting and its Macroscopic Counterpart, Class. Quant. Grav. 27 (2010) 214003 [arXiv:1008.3801] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  4. J. Simon, Extremal black holes, Holography & Coarse graining, Int. J. Mod. Phys. A 26 (2011) 1903 [arXiv:1106.0116] [SPIRES].

    ADS  Google Scholar 

  5. H.K. Kunduri and J. Lucietti, A classification of near-horizon geometries of extremal vacuum black holes, J. Math. Phys. 50 (2009) 082502 [arXiv:0806.2051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS 5 black holes, JHEP 04 (2006) 036 [hep-th/0601156] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Sen, Quantum Entropy Function from AdS 2/CFT 1 Correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [SPIRES].

    ADS  Google Scholar 

  8. A. Sen, State Operator Correspondence and Entanglement in AdS 2/CFT 1, arXiv:1101.4254 [SPIRES].

  9. M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. H.Lü, J. Mei and C.N. Pope, Kerr/CFT Correspondence in Diverse Dimensions, JHEP 04 (2009) 054 [arXiv:0811.2225] [SPIRES].

    Article  Google Scholar 

  11. T. Hartman, K. Murata, T. Nishioka and A. Strominger, CFT Duals for Extreme Black Holes, JHEP 04 (2009) 019 [arXiv:0811.4393] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. J.-J. Peng and S.-Q. Wu, Extremal Kerr/CFT correspondence of five-dimensional rotating (charged) black holes with squashed horizons, Nucl. Phys. B 828 (2010) 273 [arXiv:0911.5070] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Li, M.-F. Li and J.-R. Ren, Entropy of Kaluza-Klein Black Hole from Kerr/CFT Correspondence, Phys. Lett. B 691 (2010) 249 [arXiv:1004.5335] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. B. Chen and J. Long, On Holographic description of the Kerr-Newman-AdS-dS black holes, JHEP 08 (2010) 065 [arXiv:1006.0157] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. V. Balasubramanian, J. de Boer, M.M. Sheikh-Jabbari and J. Simon, What is a chiral 2d CFT? And what does it have to do with extremal black holes?, JHEP 02 (2010) 017 [arXiv:0906.3272] [SPIRES].

    Article  ADS  Google Scholar 

  16. O.J.C. Dias, H.S. Reall and J.E. Santos, Kerr-CFT and gravitational perturbations, JHEP 08 (2009) 101 [arXiv:0906.2380] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. A.J. Amsel, G.T. Horowitz, D. Marolf and M.M. Roberts, No Dynamics in the Extremal Kerr Throat, JHEP 09 (2009) 044 [arXiv:0906.2376] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. J. de Boer, M.M. Sheikh-Jabbari and J. Simon, Near Horizon Limits of Massless BTZ and Their CFT Duals, Class. Quant. Grav. 28 (2011) 175012 [arXiv:1011.1897] [SPIRES].

    Article  ADS  Google Scholar 

  19. J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: A vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS 5, JHEP 05 (2008) 067 [arXiv:0707.3601] [SPIRES].

    Article  ADS  Google Scholar 

  21. R. Fareghbal, C.N. Gowdigere, A.E. Mosaffa and M.M. Sheikh-Jabbari, Nearing Extremal Intersecting Giants and New Decoupled Sectors in N = 4 SYM, JHEP 08 (2008) 070 [arXiv:0801.4457] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. R. Fareghbal, C.N. Gowdigere, A.E. Mosaffa and M.M. Sheikh-Jabbari, Nearing 11 d Extremal Intersecting Giants and New Decoupled Sectors in D = 3, 6 SCFT’s, Phys. Rev. D 81 (2010) 046005 [arXiv:0805.0203] [SPIRES].

    ADS  Google Scholar 

  23. T. Azeyanagi, N. Ogawa and S. Terashima, Emergent AdS 3 in the Zero Entropy Extremal Black Holes, JHEP 03 (2011) 004 [arXiv:1010.4291] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. T. Azeyanagi, N. Ogawa and S. Terashima, On Non-Chiral Extension of Kerr/CFT, JHEP 06 (2011) 081 [arXiv:1102.3423] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. A. Sen, Black Hole Entropy Function and the Attractor Mechanism in Higher Derivative Gravity, JHEP 09 (2005) 038 [hep-th/0506177] [SPIRES].

    Article  ADS  Google Scholar 

  27. D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Astefanesei and H. Yavartanoo, Stationary black holes and attractor mechanism, Nucl. Phys. B 794 (2008) 13 [arXiv:0706.1847] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. P. Kraus and F. Larsen, Microscopic Black Hole Entropy in Theories with Higher Derivatives, JHEP 09 (2005) 034 [hep-th/0506176] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022 [hep-th/0508218] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. H. Saida and J. Soda, Statistical entropy of BTZ black hole in higher curvature gravity, Phys. Lett. B 471 (2000) 358 [gr-qc/9909061] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. F. Loran, M.M. Sheikh-Jabbari and M. Vincon, Beyond Logarithmic Corrections to Cardy Formula, JHEP 01 (2011) 110 [arXiv:1010.3561] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. D. Rasheed, The Rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys. B 454 (1995) 379 [hep-th/9505038] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. T. Matos and C. Mora, Stationary dilatons with arbitrary electromagnetic field, Class. Quant. Grav. 14 (1997) 2331 [hep-th/9610013] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. F. Larsen, Rotating Kaluza-Klein black holes, Nucl. Phys. B 575 (2000) 211 [hep-th/9909102] [SPIRES].

    Article  ADS  Google Scholar 

  36. R. Emparan and G.T. Horowitz, Microstates of a neutral black hole in M-theory, Phys. Rev. Lett. 97 (2006) 141601 [hep-th/0607023] [SPIRES].

    Article  ADS  Google Scholar 

  37. R. Emparan and A. Maccarrone, Statistical Description of Rotating Kaluza-Klein Black Holes, Phys. Rev. D 75 (2007) 084006 [hep-th/0701150] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. W. Taylor, Adhering 0-branes to 6-branes and 8-branes, Nucl. Phys. B 508 (1997) 122 [hep-th/9705116] [SPIRES].

    Article  Google Scholar 

  39. V. Jejjala and S. Nampuri, Cardy and Kerr, JHEP 02 (2010) 088 [arXiv:0909.1110] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. T. Azeyanagi, N. Ogawa and S. Terashima, Holographic Duals of Kaluza-Klein Black Holes, JHEP 04 (2009) 061 [arXiv:0811.4177] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Sen, How does a fundamental string stretch its horizon?, JHEP 05 (2005) 059 [hep-th/0411255] [SPIRES].

    Article  ADS  Google Scholar 

  42. A. Sen, Stretching the horizon of a higher dimensional small black hole, JHEP 07 (2005) 073 [hep-th/0505122] [SPIRES].

    Article  ADS  Google Scholar 

  43. J. Camps, R. Emparan, P. Figueras, S. Giusto and A. Saxena, Black Rings in Taub-NUT and D0-D6 interactions, JHEP 02 (2009) 021 [arXiv:0811.2088] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Cvetič et al., Embedding AdS black holes in ten and eleven dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [SPIRES].

    Article  ADS  Google Scholar 

  45. M.J. Duff, Lectures on branes, black holes and anti-de Sitter space, hep-th/9912164 [SPIRES].

  46. M. Alishahiha, H. Ita and Y. Oz, Graviton scattering on D6 branes with B fields, JHEP 06 (2000) 002 [hep-th/0004011] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. E.J. Martinec and W. McElgin, String theory on AdS orbifolds, JHEP 04 (2002) 029 [hep-th/0106171] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. M. Guica and A. Strominger, Microscopic Realization of the Kerr/CFT Correspondence, JHEP 02 (2011) 010 [arXiv:1009.5039] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. G. Compere, W. Song and A. Virmani, Microscopics of Extremal Kerr from Spinning M5 Branes, arXiv:1010.0685 [SPIRES].

  51. R.C. Myers and M.J. Perry, Black Holes in Higher Dimensional Space-Times, Ann. Phys. 172 (1986) 304 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. J. de Boer, M.M. Sheikh-Jabbari and J. Simon, work in progress.

  53. J. Simón, M.M. Sheikh-Jabbari, unplublished notes on 5d EVH blackholes.

  54. Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [SPIRES].

    Article  ADS  Google Scholar 

  55. Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Non-extremal charged rotating black holes in seven-dimensional gauged supergravity, Phys. Lett. B 626 (2005) 215 [hep-th/0412094] [SPIRES].

    ADS  Google Scholar 

  56. Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [SPIRES].

    Article  ADS  Google Scholar 

  57. Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Non-extremal rotating black holes in five-dimensional gauged supergravity, Phys. Lett. B 644 (2007) 192 [hep-th/0606213] [SPIRES].

    ADS  Google Scholar 

  58. J. Mei and C.N. Pope, New Rotating Non-Extremal Black Holes in D = 5 Maximal Gauged Supergravity, Phys. Lett. B 658 (2007) 64 [arXiv:0709.0559] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  59. W. Chen, H. Lü and C.N. Pope, Mass of rotating black holes in gauged supergravities, Phys. Rev. D 73 (2006) 104036 [hep-th/0510081] [SPIRES].

    ADS  Google Scholar 

  60. R. Emparan and H.S. Reall, Black Holes in Higher Dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [SPIRES].

    Google Scholar 

  61. R. Emparan and P. Figueras, Multi-black rings and the phase diagram of higher-dimensional black holes, JHEP 11 (2010) 022 [arXiv:1008.3243] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  62. R. Emparan and H.S. Reall, A rotating black ring in five dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. V. Balasubramanian, J. Parsons and S.F. Ross, States of a chiral 2d CFT, Class. Quant. Grav. 28 (2011) 045004 [arXiv:1011.1803] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Yavartanoo.

Additional information

ArXiv ePrint: 1107.5705

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheikh-Jabbari, M.M., Yavartanoo, H. EVH black holes, AdS3 throats and EVH/CFT proposal. J. High Energ. Phys. 2011, 13 (2011). https://doi.org/10.1007/JHEP10(2011)013

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)013

Keywords

Navigation