Skip to main content
Log in

The Weinberg operator and a lower string scale in orientifold compactifications

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the interplay between the string scale and phenomenological scales in orientifold compactifications. Specifically, we discuss in generality the tension that often arises in accounting for neutrino masses, Yukawa couplings, and a μ-term of the correct order and show that it often constrains the string scale M s . The discussion focuses on two scenarios where, (1) the observed order of the neutrino masses are accounted for by a D-instanton induced “stringy” Weinberg operator, or (2) effectively via the type I seesaw mechanism with an instanton induced Majorana mass term. In both scenarios, the string scale might be further constrained if the suppression factor of a single D-instanton must account for two of the phenomenological scales. For the sake of concreteness, we present phenomenologically viable quivers which exhibit these effects and perform a systematic analysis of four-stack and five-stack quivers which give rise to the exact MSSM spectrum and account for the order of the neutrino masses via the stringy Weinberg operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [SPIRES].

    Article  ADS  Google Scholar 

  2. F. Marchesano, Progress in D-brane model building, Fortsch. Phys. 55 (2007) 491 [hep-th/0702094] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [SPIRES].

    Article  ADS  Google Scholar 

  4. G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: a bottom-up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [SPIRES].

    Article  ADS  Google Scholar 

  5. I. Antoniadis, E. Kiritsis and T. Tomaras, D-brane standard model, Fortsch. Phys. 49 (2001) 573 [hep-th/0111269] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. I. Antoniadis, E. Kiritsis and T.N. Tomaras, A D-brane alternative to unification, Phys. Lett. B 486 (2000) 186 [hep-ph/0004214] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. L.E. Ibáñez and R. Richter, Stringy instantons and Yukawa couplings in MSSM-like orientifold models, JHEP 03 (2009) 090 [arXiv:0811.1583] [SPIRES].

    Article  ADS  Google Scholar 

  8. G.K. Leontaris, Instanton induced charged fermion and neutrino masses in a minimal standard model scenario from intersecting D-branes, Int. J. Mod. Phys. A 24 (2009) 6035 [arXiv: 0903. 3691] [SPIRES].

    ADS  Google Scholar 

  9. P. Anastasopoulos, E. Kiritsis and A. Lionetto, On mass hierarchies in orientifold vacua, JHEP 08 (2009) 026 [arXiv:0905.3044] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Cvetič, J. Halverson and R. Richter, Realistic Yukawa structures from orientifold compactifications, JHEP 12 (2009) 063 [arXiv:0905.3379] [SPIRES].

    Article  ADS  Google Scholar 

  11. M. Cvetič, J. Halverson and R. Richter, Mass hierarchies from MSSM orientifold compactifications, JHEP 07 (2010) 005 [arXiv:0909.4292] [SPIRES].

    ADS  Google Scholar 

  12. E. Kiritsis, M. Lennek and B. Schellekens, SU(5) orientifolds, Yukawa couplings, stringy instantons and proton decay, Nucl. Phys. B 829 (2010) 298 [arXiv:0909.0271] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Cvetič, J. Halverson and R. Richter, Mass hierarchies vs. proton decay in MSSM orientifold compactifications, arXiv:0910.2239 [SPIRES].

  14. P. Anastasopoulos, G.K. Leontaris and N.D. Vlachos, Phenomenological analysis of D-brane Pati-Salam vacua, JHEP 05 (2010) 011 [arXiv:1002.2937] [SPIRES].

    Article  ADS  Google Scholar 

  15. R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua — the seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [SPIRES].

    Article  ADS  Google Scholar 

  16. M. Haack, D. Krefl, D. Lüst, A. Van Proeyen and M. Zagermann, Gaugino condensates and D-terms from D 7-branes, JHEP 01 (2007) 078 [hep-th/0609211] [SPIRES].

    Article  ADS  Google Scholar 

  17. L.E. Ibáñez and A.M. Uranga, Neutrino Majorana masses from string theory instanton effects, JHEP 03 (2007) 052 [hep-th/0609213] [SPIRES].

    Article  ADS  Google Scholar 

  18. B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy instantons and quiver gauge theories, JHEP 05 (2007) 024 [hep-th/0610003] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-brane instantons in type II orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [SPIRES].

    Article  ADS  Google Scholar 

  20. R.N. Mohapatra et al., Theory of neutrinos: a white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [SPIRES].

    Article  ADS  Google Scholar 

  21. S. Weinberg, Varieties of baryon and lepton nonconservation, Phys. Rev. D 22 (1980) 1694 [SPIRES].

    ADS  Google Scholar 

  22. M. Cvetič, R. Richter and T. Weigand, Computation of D-brane instanton induced superpotential couplings — Majorana masses from string theory, Phys. Rev. D 76 (2007) 086002 [hep-th/0703028] [SPIRES].

    ADS  Google Scholar 

  23. L.E. Ibáñez, A.N. Schellekens and A.M. Uranga, Instanton induced neutrino Majorana masses in CFT orientifolds with MSSM-like spectra, JHEP 06 (2007) 011 [arXiv: 0704. 1079] [SPIRES].

    Article  ADS  Google Scholar 

  24. S. Antusch, L.E. Ibáñez and T. Macri, Neutrino masses and mixings from string theory instantons, JHEP 09 (2007) 087 [arXiv:0706.2132] [SPIRES].

    Article  ADS  Google Scholar 

  25. M. Cvetič and T. Weigand, Hierarchies from D-brane instantons in globally defined Calabi-Yau orientifolds, Phys. Rev. Lett. 100 (2008) 251601 [arXiv:0711.0209] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Giedt, G.L. Kane, P. Langacker and B.D. Nelson, Massive neutrinos and (heterotic) string theory, Phys. Rev. D 71 (2005) 115013 [hep-th/0502032] [SPIRES].

    ADS  Google Scholar 

  27. O. Lebedev et al., The heterotic road to the MSSM with R parity, Phys. Rev. D 77 (2008) 046013 [arXiv:0708.2691] [SPIRES].

    ADS  Google Scholar 

  28. I.R. Klebanov and E. Witten, Proton decay in intersecting D-brane models, Nucl. Phys. B 664 (2003) 3 [hep-th/0304079] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Cvetič and R. Richter, Proton decay via dimension-six operators in intersecting D6-brane models, Nucl. Phys. B 762 (2007) 112 [hep-th/0606001] [SPIRES].

    Article  ADS  Google Scholar 

  30. G. Cleaver, M. Cvetič, J.R. Espinosa, L.L. Everett and P. Langacker, Intermediate scales, μ parameter and fermion masses from string models, Phys. Rev. D 57 (1998) 2701 [hep-ph/ 9705391] [SPIRES].

    ADS  Google Scholar 

  31. M. Cvetič and P. Langacker, D-instanton generated Dirac neutrino masses, Phys. Rev. D 78 (2008) 066012 [arXiv:0803.2876] [SPIRES].

    ADS  Google Scholar 

  32. P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. P. Anastasopoulos et al., Minimal anomalous U(1)’ extension of the MSSM, Phys. Rev. D 78 (2008) 085014 [arXiv:0804.1156] [SPIRES].

    ADS  Google Scholar 

  34. D. Lüst, S. Stieberger and T.R. Taylor, The LHC string hunter’s companion, Nucl. Phys. B 808 (2009) 1 [arXiv:0807.3333] [SPIRES].

    Article  ADS  Google Scholar 

  35. L.A. Anchordoqui et al., Dijet signals for low mass strings at the LHC, Phys. Rev. Lett. 101 (2008) 241803 [arXiv:0808.0497] [SPIRES].

    Article  ADS  Google Scholar 

  36. R. Armillis, C. Corianò’, M. Guzzi and S. Morelli, An anomalous extra Z’ from intersecting branes with Drell-Yan and direct photons at the LHC, Nucl. Phys. B 814 (2009) 156 [arXiv: 0809.3772] [SPIRES].

    Article  ADS  Google Scholar 

  37. F. Fucito, A. Lionetto, A. Mammarella and A. Racioppi, Stückelino dark matter in anomalous U(1)’ models, arXiv:0811.1953 [SPIRES].

  38. L.A. Anchordoqui et al., LHC phenomenology for string hunters, Nucl. Phys. B 821 (2009) 181 [arXiv:0904.3547] [SPIRES].

    Article  ADS  Google Scholar 

  39. D. Lüst, O. Schlotterer, S. Stieberger and T.R. Taylor, The LHC string hunter’s companion (II): five-particle amplitudes and universal properties, Nucl. Phys. B 828 (2010) 139 [arXiv: 0908. 0409] [SPIRES].

    Article  ADS  Google Scholar 

  40. L.A. Anchordoqui, H. Goldberg, D. Lüst, S. Stieberger and T.R. Taylor, String phenomenology at the LHC, Mod. Phys. Lett. A 24 (2009) 2481 [arXiv: 0909. 2216] [SPIRES].

    ADS  Google Scholar 

  41. P. Burikham, T. Figy and T. Han, TeV -scale string resonances at hadron colliders, Phys. Rev. D 71 (2005) 016005 [Erratum ibid. D 71 (2005) 019905] [hep-ph/0411094] [SPIRES].

    ADS  Google Scholar 

  42. J .P. Conlon and D. Cremades, The neutrino suppression scale from large volumes, Phys. Rev. Lett. 99 (2007) 041803 [hep-ph/0611144] [SPIRES].

    Article  ADS  Google Scholar 

  43. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].

    ADS  Google Scholar 

  44. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].

    ADS  Google Scholar 

  45. J.P. Conlon and E. Palti, On gauge threshold corrections for local IIB/F-theory GUTs, Phys. Rev. D 80 (2009) 106004 [arXiv:0907.1362] [SPIRES].

    ADS  Google Scholar 

  46. J.P. Conlon and F.G. Pedro, Moduli redefinitions and moduli stabilisation, JHEP 06 (2010) 082 [arXiv:1003.0388] [SPIRES].

    Article  ADS  Google Scholar 

  47. R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [SPIRES].

    Article  ADS  Google Scholar 

  48. M. Chemtob, Phenomenological constraints on broken R parity symmetry in supersymmetry models, Prog. Part. Nucl. Phys. 54 (2005) 71 [hep-ph/0406029] [SPIRES].

    Article  ADS  Google Scholar 

  49. P. Anastasopoulos, T.P.T. Dijkstra, E. Kiritsis and A.N. Schellekens, Orientifolds, hypercharge embeddings and the standard model, Nucl. Phys. B 759 (2006) 83 [hep-th/0605226] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Halverson.

Additional information

ArXivePrint: 1001.3148

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cvetič, M., Halverson, J., Langacker, P. et al. The Weinberg operator and a lower string scale in orientifold compactifications. J. High Energ. Phys. 2010, 94 (2010). https://doi.org/10.1007/JHEP10(2010)094

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)094

Keywords

Navigation