Skip to main content
Log in

Charm mass determination from QCD charmonium sum rules at order \( \alpha_s^3 \)

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We determine the \( \overline{\mathrm{MS}} \) charm quark mass from a charmonium QCD sum rules analysis. On the theoretical side we use input from perturbation theory at \( \mathcal{O}\left( {\alpha_s^3} \right) \). Improvements with respect to previous \( \mathcal{O}\left( {\alpha_s^3} \right) \) analyses include (1) an account of all available e + e hadronic cross section data and (2) a thorough analysis of perturbative uncertainties. Using a data clustering method to combine hadronic cross section data sets from different measurements we demonstrate that using all available experimental data up to c.m. energies of 10.538 GeV allows for determinations of experimental moments and their correlations with small errors and that there is no need to rely on theoretical input above the charmonium resonances. We also show that good convergence properties of the perturbative series for the theoretical sum rule moments need to be considered with some care when extracting the charm mass and demonstrate how to set up a suitable set of scale variations to obtain a proper estimate of the perturbative uncertainty. As the final outcome of our analysis we obtain \( {{\overline{m}}_c}\left( {{{\overline{m}}_c}} \right)=1.282\pm {{\left( {0.006} \right)}_{\mathrm{stat}}}\pm {{\left( {0.009} \right)}_{\mathrm{syst}}}\pm {{\left( {0.019} \right)}_{\mathrm{pert}}}\pm {{\left( {0.010} \right)}_{{{\alpha_s}}}}\pm {{\left( {0.002} \right)}_{{\left\langle {GG} \right\rangle }}}\mathrm{GeV} \). The perturbative error is an order of magnitude larger than the one obtained in previous \( \mathcal{O}\left( {\alpha_s^3} \right) \) sum rule analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Antonelli et al., Flavor Physics in the Quark Sector, Phys. Rept. 494 (2010) 197 [arXiv:0907.5386] [INSPIRE].

    Article  ADS  Google Scholar 

  2. V. Novikov et al., Charmonium and Gluons: Basic Experimental Facts and Theoretical Introduction, Phys. Rept. 41 (1978) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  3. M.A. Shifman, A. Vainshtein and V.I. Zakharov, QCD and Resonance Physics. Sum Rules, Nucl. Phys. B 147 (1979) 385 [INSPIRE].

    Article  ADS  Google Scholar 

  4. M.A. Shifman, A. Vainshtein and V.I. Zakharov, QCD and Resonance Physics: Applications, Nucl. Phys. B 147 (1979) 448 [INSPIRE].

    Article  ADS  Google Scholar 

  5. J.H. Kuhn and M. Steinhauser, Determination of αs and heavy quark masses from recent measurements of R(s), Nucl. Phys. B 619 (2001) 588 [Erratum ibid. B 640 (2002) 415] [hep-ph/0109084] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A.O.G. Kallen and A. Sabry, Fourth order vacuum polarization, Kong. Dan. Vid. Sel. Mat. Fys. Med. 29N17 (1955) 1.

  7. K. Chetyrkin, J.H. Kuhn and M. Steinhauser, Heavy quark vacuum polarization to three loops, Phys. Lett. B 371 (1996) 93 [hep-ph/9511430] [INSPIRE].

    Article  ADS  Google Scholar 

  8. K. Chetyrkin, J.H. Kuhn and M. Steinhauser, Three loop polarization function and O (alpha-S 2 ) corrections to the production of heavy quarks, Nucl. Phys. B 482 (1996) 213 [hep-ph/9606230] [INSPIRE].

    Article  ADS  Google Scholar 

  9. R. Boughezal, M. Czakon and T. Schutzmeier, Four-Loop Tadpoles: Applications in QCD, Nucl. Phys. Proc. Suppl. 160 (2006) 160 [hep-ph/0607141] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Czakon and T. Schutzmeier, Double fermionic contributions to the heavy-quark vacuum polarization, JHEP 07 (2008) 001 [arXiv:0712.2762] [INSPIRE].

    ADS  Google Scholar 

  11. A. Maier, P. Maierhofer and P. Marquard, Higher Moments of Heavy Quark Correlators in the Low Energy Limit at \( O\left( {\alpha_s^2} \right) \) , Nucl. Phys. B 797 (2008) 218 [arXiv:0711.2636] [INSPIRE].

    Article  ADS  Google Scholar 

  12. K. Chetyrkin, J.H. Kuhn and C. Sturm, Four-loop moments of the heavy quark vacuum polarization function in perturbative QCD, Eur. Phys. J. C 48 (2006) 107 [hep-ph/0604234] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. Boughezal, M. Czakon and T. Schutzmeier, Charm and bottom quark masses from perturbative QCD, Phys. Rev. D 74 (2006) 074006 [hep-ph/0605023] [INSPIRE].

    ADS  Google Scholar 

  14. A. Maier, P. Maierhofer and P. Marqaurd, The Second physical moment of the heavy quark vector correlator at \( O\left( {\alpha_s^2} \right) \) , Phys. Lett. B 669 (2008) 88 [arXiv:0806.3405] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Maier, P. Maierhofer, P. Marquard and A. Smirnov, Low energy moments of heavy quark current correlators at four loops, Nucl. Phys. B 824 (2010) 1 [arXiv:0907.2117] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A.H. Hoang, V. Mateu and S. Mohammad Zebarjad, Heavy Quark Vacuum Polarization Function at \( O\left( {\alpha_s^2} \right) \) and \( O\left( {\alpha_s^3} \right) \) , Nucl. Phys. B 813 (2009) 349 [arXiv:0807.4173] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Y. Kiyo, A. Maier, P. Maierhofer and P. Marquard, Reconstruction of heavy quark current correlators at \( O\left( {\alpha_s^3} \right) \), Nucl. Phys. B 823 (2009) 269 [arXiv:0907.2120] [INSPIRE].

    Article  ADS  Google Scholar 

  18. D. Greynat and S. Peris, Resummation of Threshold, Low- and High-Energy Expansions for Heavy-Quark Correlators, Phys. Rev. D 82 (2010) 034030 [Erratum ibid. D 82 (2010) 119907] [arXiv:1006.0643] [INSPIRE].

    ADS  Google Scholar 

  19. D.J. Broadhurst et al., Two loop gluon condensate contributions to heavy quark current correlators: exact results and approximations, Phys. Lett. B 329 (1994) 103 [hep-ph/9403274] [INSPIRE].

    Article  ADS  Google Scholar 

  20. BES collaboration, J. Bai et al., Measurement of the total cross-section for hadronic production by e + e annihilation at energies between 2.6-GeV - 5-GeV, Phys. Rev. Lett. 84 (2000) 594 [hep-ex/9908046] [INSPIRE].

    Article  ADS  Google Scholar 

  21. BES collaboration, J. Bai et al., Measurements of the cross-section for e + e hadrons at center-of-mass energies from 2-GeV to 5-GeV, Phys. Rev. Lett. 88 (2002) 101802 [hep-ex/0102003] [INSPIRE].

    Article  ADS  Google Scholar 

  22. BES collaboration, M. Ablikim et al., Measurement of Cross sections for \( {D^0}{{\overline{D}}^0} \) and D + D Production in e + e Annihilation at \( \sqrt{s} \) = 3.773 GeV, Phys. Lett. B 603 (2004) 130 [hep-ex/0411013] [INSPIRE].

    ADS  Google Scholar 

  23. BES collaboration, M. Ablikim et al., Measurements of the cross-sections for e + e hadrons at 3.650-GeV, 3.6648-GeV, 3.773-GeV and the branching fraction for ψ(3770) → non \( D\overline{D} \) , Phys. Lett. B 641 (2006) 145 [hep-ex/0605105] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Ablikim et al., Measurements of the continuum R uds and R values in e + e annihilation in the energy region between 3.650 and 3.872-GeV, Phys. Rev. Lett. 97 (2006) 262001 [hep-ex/0612054] [INSPIRE].

    Article  ADS  Google Scholar 

  25. BES Bollaboration collaboration, M. Ablikim et al., R value measurements for e + e annihilation at 2.60-GeV, 3.07-GeV and 3.65-GeV, Phys. Lett. B 677 (2009) 239 [arXiv:0903.0900] [INSPIRE].

    Article  ADS  Google Scholar 

  26. Osterheld et al., Measurements of total hadronic and inclusive D cross-sections in e + e annihilations between 3.87 GeV and 4.5 GeV, SLAC-PUB-4160.

  27. C. Edwards et al., Hadron production in e + e annihilation from s 1/2 = 5 GeV to 7.4 GeV, SLAC-PUB-5160.

  28. CLEO collaboration, R. Ammar et al., A Measurement of the total cross-section for e + e hadrons at \( \sqrt{s} \) = 10.5 2-GeV, Phys. Rev. D 57 (1998) 1350 [hep-ex/9707018] [INSPIRE].

    ADS  Google Scholar 

  29. CLEO collaboration, D. Besson et al., Observation of New Structure in the e + e Annihilation Cross-Section Above \( B\overline{B} \) Threshold, Phys. Rev. Lett. 54 (1985) 381 [INSPIRE].

    Article  ADS  Google Scholar 

  30. CLEO collaboration, D. Besson et al., Measurement of the Total Hadronic Cross section in e + e Annihilations below 10.56-GeV, Phys. Rev. D 76 (2007) 072008 [arXiv:0706.2813] [INSPIRE].

    ADS  Google Scholar 

  31. CLEO collaboration, D. Cronin-Hennessy et al., Measurement of Charm Production Cross sections in e + e Annihilation at Energies between 3.97 and 4.26-GeV, Phys. Rev. D 80 (2009) 072001 [arXiv:0801.3418] [INSPIRE].

    ADS  Google Scholar 

  32. A. Blinov et al., The Measurement of R in e + e annihilation at center-of-mass energies between 7.2-GeV and 10.34-GeV, Z. Phys. C 70 (1996) 31 [INSPIRE].

    ADS  Google Scholar 

  33. L. Criegee and G. Knies, Review of e + e Experiments With Pluto From 3-GeV to 31-GeV, Phys. Rept. 83 (1982) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Siegrist et al., Observation of a Resonance at 4.4-GeV and Additional Structure Near 4.1-GeV in e + e Annihilation, Phys. Rev. Lett. 36 (1976) 700 [INSPIRE].

    Article  ADS  Google Scholar 

  35. P.A. Rapidis et al., Observation of a Resonance in e + e Annihilation Just Above Charm Threshold, Phys. Rev. Lett. 39 (1977) 526 [Erratum ibid. 39 (1977) 974] [INSPIRE].

    Article  ADS  Google Scholar 

  36. G. Abrams et al., Measurement of the Parameters of the ψ ′′(3770) Resonance, Phys. Rev. D 21 (1980) 2716 [INSPIRE].

    ADS  Google Scholar 

  37. J. Siegrist et al., Hadron Production by e + e Annihilation at Center-Of-Mass Energies Between 2.6-GeV and 7.8-GeV. Part 1. Total Cross-Section, Multiplicities and Inclusive Momentum Distributions, Phys. Rev. D 26 (1982) 969 [INSPIRE].

    ADS  Google Scholar 

  38. A. Hoang and M. Jamin, MSBAR charm mass from charmonium sum rules with contour improvement, Phys. Lett. B 594 (2004) 127 [hep-ph/0403083] [INSPIRE].

    Article  ADS  Google Scholar 

  39. K. Chetyrkin et al., Charm and Bottom Quark Masses: an Update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [INSPIRE].

    ADS  Google Scholar 

  40. J.H. Kuhn, M. Steinhauser and C. Sturm, Heavy Quark Masses from Sum Rules in Four-Loop Approximation, Nucl. Phys. B 778 (2007) 192 [hep-ph/0702103] [INSPIRE].

    Article  ADS  Google Scholar 

  41. Particle Data Group collaboration, W. Yao et al., Review of Particle Physics, J. Phys. G 33 (2006) 1 [INSPIRE].

    ADS  Google Scholar 

  42. HPQCD collaboration, I. Allison et al., High-Precision Charm-Quark Mass from Current-Current Correlators in Lattice and Continuum QCD, Phys. Rev. D 78 (2008) 054513 [arXiv:0805.2999] [INSPIRE].

    ADS  Google Scholar 

  43. C. McNeile, C. Davies, E. Follana, K. Hornbostel and G. Lepage, High-Precision c and b Masses and QCD Coupling from Current-Current Correlators in Lattice and Continuum QCD, Phys. Rev. D 82 (2010) 034512 [arXiv:1004.4285] [INSPIRE].

    ADS  Google Scholar 

  44. S. Bodenstein, J. Bordes, C. Dominguez, J. Penarrocha and K. Schilcher, QCD sum rule determination of the charm-quark mass, Phys. Rev. D 83 (2011) 074014 [arXiv:1102.3835] [INSPIRE].

    ADS  Google Scholar 

  45. J. Penarrocha and K. Schilcher, QCD duality and the mass of the charm quark, Phys. Lett. B 515 (2001) 291 [hep-ph/0105222] [INSPIRE].

    Article  ADS  Google Scholar 

  46. G. D’Agostini, On the use of the covariance matrix to fit correlated data, Nucl. Instrum. Meth. A 346 (1994) 306 [INSPIRE].

    Article  ADS  Google Scholar 

  47. T. Takeuchi, The Status of the determination of α(m Z) and αs(m Z), Prog. Theor. Phys. Suppl. 123 (1996) 247 [hep-ph/9603415] [INSPIRE].

    Article  ADS  Google Scholar 

  48. K. Hagiwara, A. Martin, D. Nomura and T. Teubner, Predictions for g-2 of the muon and \( {\alpha_{QED }}\left( {M_Z^2} \right) \), Phys. Rev. D 69 (2004) 093003 [hep-ph/0312250] [INSPIRE].

    ADS  Google Scholar 

  49. F. Le Diberder and A. Pich, The perturbative QCD prediction to R τ revisited, Phys. Lett. B 286 (1992) 147 [INSPIRE].

    Article  ADS  Google Scholar 

  50. A. Pivovarov, Renormalization group analysis of the tau lepton decay within QCD, Z. Phys. C 53 (1992) 461 [hep-ph/0302003] [INSPIRE].

    ADS  Google Scholar 

  51. E. Braaten, S. Narison and A. Pich, QCD analysis of the tau hadronic width, Nucl. Phys. B 373 (1992) 581 [INSPIRE].

    Article  ADS  Google Scholar 

  52. S. Narison and A. Pich, QCD Formulation of the tau Decay and Determination of Λ MS , Phys. Lett. B 211 (1988) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  53. E. Braaten, The Perturbative QCD Corrections to the Ratio R for tau Decay, Phys. Rev. D 39 (1989) 1458 [INSPIRE].

    ADS  Google Scholar 

  54. E. Braaten, QCD Predictions for the Decay of the tau Lepton, Phys. Rev. Lett. 60 (1988) 1606 [INSPIRE].

    Article  ADS  Google Scholar 

  55. P. Baikov, V. Ilyin and V.A. Smirnov, Gluon condensate fit from the two loop correction to the coefficient function, Phys. Atom. Nucl. 56 (1993) 1527 [INSPIRE].

    ADS  Google Scholar 

  56. K. Chetyrkin et al., Precise Charm- and Bottom-Quark Masses: Theoretical and Experimental Uncertainties, Theor. Math. Phys. 170 (2012) 217 [arXiv:1010.6157] [INSPIRE].

    Article  Google Scholar 

  57. S. Narison and R. Tarrach, Higher Dimensional Renormalization Group Invariant Vacuum Condensates in Quantum Chromodynamics, Phys. Lett. B 125 (1983) 217 [INSPIRE].

    Article  ADS  Google Scholar 

  58. B. Ioffe, QCD at low energies, Prog. Part. Nucl. Phys. 56 (2006) 232 [hep-ph/0502148] [INSPIRE].

    Article  ADS  Google Scholar 

  59. A. Hoang, Bottom quark mass from Upsilon mesons, Phys. Rev. D 59 (1999) 014039 [hep-ph/9803454] [INSPIRE].

    ADS  Google Scholar 

  60. O. Tarasov, A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].

    Article  ADS  Google Scholar 

  61. S. Larin and J. Vermaseren, The Three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].

    Article  ADS  Google Scholar 

  62. T. van Ritbergen, J. Vermaseren and S. Larin, The Four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].

    Article  ADS  Google Scholar 

  63. K. Chetyrkin, Quark mass anomalous dimension to \( O\left( {\alpha_s^4} \right) \), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].

    Article  ADS  Google Scholar 

  64. J. Vermaseren, S. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].

    Article  ADS  Google Scholar 

  65. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  66. D. Nomura and T. Teubner, private communication.

  67. S. Bodenstein, J. Bordes, C. Dominguez, J. Penarrocha and K. Schilcher, Charm-quark mass from weighted finite energy QCD sum rules, Phys. Rev. D 82 (2010) 114013 [arXiv:1009.4325] [INSPIRE].

    ADS  Google Scholar 

  68. S. Narison, Gluon condensates and c, b quark masses from quarkonia ratios of moments, Phys. Lett. B 693 (2010) 559 [Erratum ibid. 705 (2011) 544] [arXiv:1004.5333] [INSPIRE].

    Article  ADS  Google Scholar 

  69. K. Chetyrkin, A. Kataev and F. Tkachov, Higher Order Corrections to σt(e + e → Hadrons) in Quantum Chromodynamics, Phys. Lett. B 85 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Dine and J. Sapirstein, Higher Order QCD Corrections in e + e Annihilation, Phys. Rev. Lett. 43 (1979) 668 [INSPIRE].

    Article  ADS  Google Scholar 

  71. W. Celmaster and R.J. Gonsalves, An Analytic Calculation of Higher Order Quantum Chromodynamic Corrections in e + e Annihilation, Phys. Rev. Lett. 44 (1980) 560 [INSPIRE].

    Article  ADS  Google Scholar 

  72. S. Gorishnii, A. Kataev and S. Larin, Next-To-Leading \( O\left( {\alpha_s^3} \right) \) QCD Correction to σt(e + e → Hadrons): Analytical Calculation and Estimation of the Parameter Lambda (MS), Phys. Lett. B 212 (1988) 238 [INSPIRE].

    Article  ADS  Google Scholar 

  73. S. Gorishnii, A. Kataev and S. Larin, Correction \( O\left( {\alpha_s^3} \right) \) to σtot(e + e → hadrons) in quantum chromodynamics, JETP Lett. 53 (1991) 127 [INSPIRE].

    ADS  Google Scholar 

  74. W. Bernreuther and W. Wetzel, Order \( \alpha_s^2 \) Massive Quark Contribution to the Vacuum Polarization of Massless Quarks, Z.Phys. C 11 (1981) 113.

    ADS  Google Scholar 

  75. S. Gorishnii, A. Kataev and S. Larin, Three Loop Corrections of Order O(M 2) to the Correlator of Electromagnetic Quark Currents, Nuovo Cim. A 92 (1986) 119 [INSPIRE].

    Article  ADS  Google Scholar 

  76. K. Chetyrkin and A. Kwiatkowski, Mass corrections to the tau decay rate, Z. Phys. C 59 (1993) 525 [hep-ph/9805232] [INSPIRE].

    ADS  Google Scholar 

  77. K. Chetyrkin and J.H. Kuhn, Quartic mass corrections to R had, Nucl. Phys. B 432 (1994) 337 [hep-ph/9406299] [INSPIRE].

    Article  ADS  Google Scholar 

  78. K. Chetyrkin, R. Harlander and J.H. Kuhn, Quartic mass corrections to R had at order \( \alpha_s^3 \), Nucl. Phys. B 586 (2000) 56 [Erratum ibid. B 634 (2002) 413] [hep-ph/0005139] [INSPIRE].

    Article  ADS  Google Scholar 

  79. A. Hoang and T. Teubner, Analytic calculation of two loop corrections to heavy quark pair production vertices induced by light quarks, Nucl. Phys. B 519 (1998) 285 [hep-ph/9707496] [INSPIRE].

    Article  ADS  Google Scholar 

  80. A. Hoang, M. Jezabek, J.H. Kuhn and T. Teubner, Radiation of heavy quarks, Phys. Lett. B 338 (1994) 330 [hep-ph/9407338] [INSPIRE].

    Article  ADS  Google Scholar 

  81. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  82. T. Gehrmann, G. Luisoni and P.F. Monni, Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution, Eur. Phys. J. C 73 (2013) 2265 [arXiv:1210.6945] [INSPIRE].

    Article  ADS  Google Scholar 

  83. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Precision Thrust Cumulant Moments at N 3 LL, Phys. Rev. D 86 (2012) 094002 [arXiv:1204.5746] [INSPIRE].

    ADS  Google Scholar 

  84. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with Power Corrections and a Precision Global Fit for αs(m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].

    ADS  Google Scholar 

  85. R. Frederix, S. Frixione, K. Melnikov and G. Zanderighi, NLO QCD corrections to five-jet production at LEP and the extraction of αs(M Z ), JHEP 11 (2010) 050 [arXiv:1008.5313] [INSPIRE].

    Article  ADS  Google Scholar 

  86. T. Gehrmann, M. Jaquier and G. Luisoni, Hadronization effects in event shape moments, Eur. Phys. J. C 67 (2010) 57 [arXiv:0911.2422] [INSPIRE].

    Article  ADS  Google Scholar 

  87. J. Blumlein, H. Bottcher and A. Guffanti, Non-singlet QCD analysis of deep inelastic world data at \( O\left( {\alpha_s^3} \right) \), Nucl. Phys. B 774 (2007) 182 [hep-ph/0607200] [INSPIRE].

    Article  ADS  Google Scholar 

  88. J. Blumlein and H. Bottcher, QCD Analysis of Polarized Deep Inelastic Scattering Data, Nucl. Phys. B 841 (2010) 205 [arXiv:1005.3113] [INSPIRE].

    Article  ADS  Google Scholar 

  89. S. Bethke, The 2009 World Average of αs(M Z ), Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [INSPIRE].

    Article  ADS  Google Scholar 

  90. S. Alekhin, J. Blümlein, K. Daum, K. Lipka and S. Moch, Precise charm-quark mass from deep-inelastic scattering, Phys. Lett. B 720 (2013) 172 [arXiv:1212.2355] [INSPIRE].

    Article  ADS  Google Scholar 

  91. S. Alekhin, K. Daum, K. Lipka and S. Moch, Determination of the charm-quark mass in the MS-bar scheme using charm production data from deep inelastic scattering at HERA, Phys. Lett. B 718 (2012) 550 [arXiv:1209.0436] [INSPIRE].

    Article  ADS  Google Scholar 

  92. A. Grozin and C. Sturm, Correlator of heavy-quark currents at small Q 2 in the large-β 0 limit, Eur. Phys. J. C 40 (2005) 157 [hep-ph/0412040] [INSPIRE].

    Article  ADS  Google Scholar 

  93. J. Portoles and P. Ruiz-Femenia, On the massless contributions to the vacuum polarization of heavy quarks, J. Phys. G 29 (2003) 349 [hep-ph/0107324] [INSPIRE].

    Article  ADS  Google Scholar 

  94. J. Portoles and P. Ruiz-Femenia, New contributions to heavy quark sum rules, Eur. Phys. J. C 24 (2002) 439 [hep-ph/0202114] [INSPIRE].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicent Mateu.

Additional information

ArXiv ePrint: 1102.2264

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehnadi, B., Hoang, A.H., Mateu, V. et al. Charm mass determination from QCD charmonium sum rules at order \( \alpha_s^3 \) . J. High Energ. Phys. 2013, 103 (2013). https://doi.org/10.1007/JHEP09(2013)103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)103

Keywords

Navigation