Skip to main content
Log in

Reliability of Monte Carlo event generators for gamma-ray dark matter searches

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the differences in the gamma-ray spectra simulated by four Monte Carlo event generator packages developed in particle physics. Two different versions of PYTHIA and two of HERWIG are analyzed, namely PYTHIA 6.418 and HERWIG 6.5.10 in Fortran and PYTHIA 8.165 and HERWIG 2.6.1 in C++. For all the studied channels, the intrinsic differences between them are shown to be significative and may play an important role in misunderstanding dark matter signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Covi, J.E. Kim and L. Roszkowski, Axinos as cold dark matter, Phys. Rev. Lett. 82 (1999) 4180 [hep-ph/9905212] [INSPIRE].

    Article  ADS  Google Scholar 

  2. J.L. Feng, A. Rajaraman and F. Takayama, Graviton cosmology in universal extra dimensions, Phys. Rev. D 68 (2003) 085018 [hep-ph/0307375] [INSPIRE].

    ADS  Google Scholar 

  3. J.L. Feng, A. Rajaraman and F. Takayama, Probing gravitational interactions of elementary particles, Int. J. Mod. Phys. D 13 (2004) 2355 [hep-th/0405248] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. J.A. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP solutions to small scale structure problems, Phys. Rev. Lett. 95 (2005) 181301 [hep-ph/0507150] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J.A. Cembranos, J.L. Feng and L.E. Strigari, Exotic Collider Signals from the Complete Phase Diagram of Minimal Universal Extra Dimensions, Phys. Rev. D 75 (2007) 036004 [hep-ph/0612157] [INSPIRE].

    ADS  Google Scholar 

  6. J.A. Cembranos, Dark Matter from R2-gravity, Phys. Rev. Lett. 102 (2009) 141301 [arXiv:0809.1653] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Cembranos, The Newtonian limit at intermediate energies, Phys. Rev. D 73 (2006) 064029 [gr-qc/0507039] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. J.A. Cembranos, J.L. Diaz-Cruz and L. Prado, Impact of DM direct searches and the LHC analyses on branon phenomenology, Phys. Rev. D 84 (2011) 083522 [arXiv:1110.0542] [INSPIRE].

    ADS  Google Scholar 

  9. H. Goldberg, Constraint on the Photino Mass from Cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].

  10. J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric Relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].

    Article  ADS  Google Scholar 

  11. K. Griest and M. Kamionkowski, Supersymmetric dark matter, Phys. Rept. 333 (2000) 167 [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Cembranos, A. Dobado and A.L. Maroto, Brane world dark matter, Phys. Rev. Lett. 90 (2003) 241301 [hep-ph/0302041] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Cembranos, A. Dobado and A.L. Maroto, Cosmological and astrophysical limits on brane fluctuations, Phys. Rev. D 68 (2003) 103505 [hep-ph/0307062] [INSPIRE].

    ADS  Google Scholar 

  14. J. Cembranos, A. Dobado and A.L. Maroto, Branon radiative corrections to collider physics and precision observables, Phys. Rev. D 73 (2006) 035008 [hep-ph/0510399] [INSPIRE].

    ADS  Google Scholar 

  15. J. Cembranos, A. Dobado and A.L. Maroto, Dark matter clues in the muon anomalous magnetic moment, Phys. Rev. D 73 (2006) 057303 [hep-ph/0507066] [INSPIRE].

    ADS  Google Scholar 

  16. A.L. Maroto, The Nature of branon dark matter, Phys. Rev. D 69 (2004) 043509 [hep-ph/0310272] [INSPIRE].

    ADS  Google Scholar 

  17. A.L. Maroto, Brane oscillations and the cosmic coincidence problem, Phys. Rev. D 69 (2004) 101304 [hep-ph/0402278] [INSPIRE].

    ADS  Google Scholar 

  18. A. Dobado and A.L. Maroto, The Dynamics of the Goldstone bosons on the brane, Nucl. Phys. B 592 (2001) 203 [hep-ph/0007100] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. J. Cembranos, A. Dobado and A.L. Maroto, Dark geometry, Int. J. Mod. Phys. D 13 (2004) 2275 [hep-ph/0405165] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Cembranos, A. de la Cruz-Dombriz, A. Dobado and A.L. Maroto, Is the CMB Cold Spot a gate to extra dimensions?, JCAP 10 (2008) 039 [arXiv:0803.0694] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J. Alcaraz, J. Cembranos, A. Dobado and A.L. Maroto, Limits on the brane fluctuations mass and on the brane tension scale from electron positron colliders, Phys. Rev. D 67 (2003) 075010 [hep-ph/0212269] [INSPIRE].

    ADS  Google Scholar 

  22. L3 collaboration, P. Achard et al., Search for branons at LEP, Phys. Lett. B 597 (2004) 145 [hep-ex/0407017] [INSPIRE].

    ADS  Google Scholar 

  23. J. Cembranos, A. Rajaraman and F. Takayama, Searching for CPT violation in tt production, Europhys. Lett. 82 (2008) 21001 [hep-ph/0609244] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Cembranos, A. Dobado and A.L. Maroto, Brane skyrmions and wrapped states, Phys. Rev. D 65 (2002) 026005 [hep-ph/0106322] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. J. Cembranos, A. Dobado and A.L. Maroto, Some model-independent phenomenological consequences of flexible brane worlds, J. Phys. A 40 (2007) 6631 [hep-ph/0611024] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. J. Cembranos, A. Dobado and A.L. Maroto, Branon search in hadronic colliders, Phys. Rev. D 70 (2004) 096001 [hep-ph/0405286] [INSPIRE].

    ADS  Google Scholar 

  27. J. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, Gravitino and axino superWIMPs, AIP Conf. Proc. 903 (2007) 591 [hep-ph/0701011] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.A. Cembranos and L.E. Strigari, Diffuse MeV Gamma-rays and Galactic 511 keV Line from Decaying WIMP Dark Matter, Phys. Rev. D 77 (2008) 123519 [arXiv:0801.0630] [INSPIRE].

    ADS  Google Scholar 

  29. J.A. Cembranos, J.L. Feng and L.E. Strigari, Resolving Cosmic Gamma Ray Anomalies with Dark Matter Decaying Now, Phys. Rev. Lett. 99 (2007) 191301 [arXiv:0704.1658] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 1210 (2012) E01] [arXiv:1012.4515] [INSPIRE].

  31. J. Cembranos, V. Gammaldi and A. Maroto, Possible dark matter origin of the gamma ray emission from the galactic center observed by HESS, Phys. Rev. D 86 (2012) 103506 [arXiv:1204.0655] [INSPIRE].

    ADS  Google Scholar 

  32. J. Cembranos, V. Gammaldi and A. Maroto, Spectral Study of the HESS J1745-290 Gamma-Ray Source as Dark Matter Signal, JCAP 04 (2013) 051 [arXiv:1302.6871] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Cembranos, A. de la Cruz-Dombriz, V. Gammaldi and A. Maroto, Detection of branon dark matter with gamma ray telescopes, Phys. Rev. D 85 (2012) 043505 [arXiv:1111.4448] [INSPIRE].

    ADS  Google Scholar 

  34. J. Cembranos, A. de la Cruz-Dombriz, A. Dobado, R. Lineros and A. Maroto, Photon spectra from WIMP annihilation, Phys. Rev. D 83 (2011) 083507 [arXiv:1009.4936] [INSPIRE].

    ADS  Google Scholar 

  35. J. Cembranos, A. Cruz-Dombriz, A. Dobado, R. Lineros and A. Maroto, Photon spectra from quark generation by WIMPs, AIP Conf. Proc. 1343 (2011) 595 [arXiv:1011.2137] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J. Cembranos, A. de la Cruz-Dombriz, A. Dobado, R. Lineros and A. Maroto, Fitting formulae for photon spectra from WIMP annihilation, J. Phys. Conf. Ser. 314 (2011) 012063 [arXiv:1012.4473] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. de la Cruz-Dombriz and V. Gammaldi, Dark Matter with Photons, arXiv:1109.5027 [INSPIRE].

  38. http://teorica.fis.ucm.es/PaginaWeb/photon_spectra.html.

  39. A.V. Belikov, G. Zaharijas and J. Silk, Study of the Gamma-ray Spectrum from the Galactic Center in view of Multi-TeV Dark Matter Candidates, Phys. Rev. D 86 (2012) 083516 [arXiv:1207.2412] [INSPIRE].

    ADS  Google Scholar 

  40. Fermi-LAT collaboration, A. Abdo et al., Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models, Astrophys. J. 712 (2010)147 [arXiv:1001.4531] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Chernyakova, D. Malyshev, F. Aharonian, R. Crocker and D. Jones, The high-energy, Arcminute-scale galactic center gamma-ray source, Astrophys. J. 726 (2011) 60 [arXiv:1009.2630] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Linden, E. Lovegrove and S. Profumo, The Morphology of Hadronic Emission Models for the Gamma-Ray Source at the Galactic Center, Astrophys. J. 753 (2012) 41 [arXiv:1203.3539] [INSPIRE].

    Article  ADS  Google Scholar 

  43. CANGAROO-II collaboration, K. Tsuchiya et al., Detection of sub-TeV gamma-rays from the Galactic Center direction by CANGAROO-II, Astrophys. J. 606 (2004) L115 [astro-ph/0403592] [INSPIRE].

    Article  ADS  Google Scholar 

  44. VERITAS collaboration, K. Kosack et al., TeV gamma-ray observations of the galactic center, Astrophys. J. 608 (2004) L97 [astro-ph/0403422] [INSPIRE].

    Article  ADS  Google Scholar 

  45. HESS collaboration, F. Aharonian et al., Very high-energy gamma rays from the direction of Sagittarius A*, Astron. Astrophys. 425 (2004) L13 [astro-ph/0408145] [INSPIRE].

    Article  ADS  Google Scholar 

  46. H.E.S.S.collaboration collaboration, F. Aharonian and F. Aharonian, Spectrum and variability of the Galactic Center VHE gamma-ray source HESS J1745-290, Astron. Astrophys. 503 (2009) 817 [arXiv:0906.1247] [INSPIRE].

    Article  ADS  Google Scholar 

  47. J. Albert et al., Observation of gamma-rays from the galactic center with the magic telescope, Astrophys. J. 638 (2006) L101.

    Article  ADS  Google Scholar 

  48. MAGIC collaboration, J. Aleksic et al., Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope, JCAP 06 (2011) 035 [arXiv:1103.0477] [INSPIRE].

    Article  ADS  Google Scholar 

  49. WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18.

    Article  ADS  Google Scholar 

  50. AGIS collaboration, G. Maier, The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies, arXiv:0907.5118 [INSPIRE].

  51. N. Sainz, Does Zeemans Fine Topology Exist?, arXiv:1003.3703 [INSPIRE].

  52. http://www.cta-observatory.org/.

  53. G.R. Blumenthal, S. Faber, R. Flores and J.R. Primack, Contraction of Dark Matter Galactic Halos Due to Baryonic Infall, Astrophys. J. 301 (1986) 27 [INSPIRE].

    Article  ADS  Google Scholar 

  54. O.Y. Gnedin, A.V. Kravtsov, A.A. Klypin and D. Nagai, Response of dark matter halos to condensation of baryons: Cosmological simulations and improved adiabatic contraction model, Astrophys. J. 616 (2004) 16 [astro-ph/0406247] [INSPIRE].

    Article  ADS  Google Scholar 

  55. F. Prada, A. Klypin, J. Flix Molina, M. Martinez and E. Simonneau, Dark Matter Annihilation in the Milky Way Galaxy: Effects of Baryonic Compression, Phys. Rev. Lett. 93 (2004) 241301 [astro-ph/0401512] [INSPIRE].

    Article  ADS  Google Scholar 

  56. E. Romano-Díaz, I. Shlosman, Y. Hoffman and C. Heller, Erasing dark matter cusps in cosmological galactic halos with baryons, Astrophys. J. 685 (2008) L105.

    Article  ADS  Google Scholar 

  57. E. Romano-Diaz, I. Shlosman, C. Heller and Y. Hoffman, Dissecting Galaxy Formation: I. Comparison Between Pure Dark Matter and Baryonic Models, Astrophys. J. 702 (2009) 1250 [arXiv:0901.1317] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A.V. Maccio’ et al., Halo expansion in cosmological hydro simulations: towards a baryonic solution of the cusp/core problem in massive spirals, arXiv:1111.5620 [INSPIRE].

  59. P. Salucci et al., Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws, arXiv:1111.1165 [INSPIRE].

  60. M. Baldi and P. Salucci, Constraints on interacting dark energy models from galaxy Rotation Curves, JCAP 02 (2012) 014 [arXiv:1111.3953] [INSPIRE].

    Article  ADS  Google Scholar 

  61. G. Castignani, N. Frusciante, D. Vernieri and P. Salucci, The density profiles of Dark Matter halos in Spiral Galaxies, Natural Sci. 4 (2012) 265 [arXiv:1201.3998] [INSPIRE].

    Article  Google Scholar 

  62. I. Cholis and P. Salucci, Extracting limits on Dark Matter annihilation from gamma-ray observations towards dwarf spheroidal galaxies, Phys. Rev. D 86 (2012) 023528 [arXiv:1203.2954] [INSPIRE].

    ADS  Google Scholar 

  63. M.H. Seymour and M. Marx, Monte Carlo Event Generators, arXiv:1304.6677 [INSPIRE].

  64. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  65. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    Article  ADS  Google Scholar 

  66. G. Marchesini and B. Webber, Simulation of QCD Jets Including Soft Gluon Interference, Nucl. Phys. B 238 (1984) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  67. G. Marchesini and B. Webber, Monte Carlo Simulation of General Hard Processes with Coherent QCD Radiation, Nucl. Phys. B 310 (1988) 461 [INSPIRE].

    Article  ADS  Google Scholar 

  68. T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].

    Article  ADS  Google Scholar 

  69. S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635.

    Article  ADS  Google Scholar 

  70. T. Sjöstrand, S. Mrenna and P. Skands, Pythia 6.4 Physic and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  71. T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  72. http://home.thep.lu.se/~torbjorn/pythia81.html.

  73. G. Corcella et al., HERWIG 6.5: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].

    Article  ADS  Google Scholar 

  74. M. Bähr et al., Herwig++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  75. S. Gieseke et al., HERWIG++ 2.5 Release Note, arXiv:1102.1672 [INSPIRE].

  76. K. Arnold et al., HERWIG++ 2.6 Release Note, arXiv:1205.4902 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gammaldi.

Additional information

ArXiv ePrint: 1305.2124

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cembranos, J.A.R., de la Cruz-Dombriz, A., Gammaldi, V. et al. Reliability of Monte Carlo event generators for gamma-ray dark matter searches. J. High Energ. Phys. 2013, 77 (2013). https://doi.org/10.1007/JHEP09(2013)077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)077

Keywords

Navigation