Skip to main content
Log in

Nonperturbative universal Chern-Simons theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Closed simple integral representation through Vogel’s universal parameters is found both for perturbative and nonperturbative (which is inverse invariant group volume) parts of free energy of Chern-Simons theory on S 3. This proves the universality of that partition function. For classical groups it manifestly satisfy N → −N duality, in apparent contradiction with previously used ones. For SU(N ) we show that asymptotic of nonperturbative part of our partition function coincides with that of Barnes G-function, recover Chern-Simons/topological string duality in genus expansion and resolve abovementioned contradiction. We discuss few possible directions of development of these results: derivation of representation of free energy through Gopakumar-Vafa invariants, possible appearance of non-perturbative additional terms, 1/N expansion for exceptional groups, duality between string coupling constant and Kähler parameters, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. R.L. Mkrtchyan, The equivalence of Sp(2N ) and SO(−2N ) gauge theories, Phys. Lett. B 105 (1981) 174 [INSPIRE].

    Article  ADS  Google Scholar 

  3. P. Cvitanovic, Group Theory, Princeton University Press, Princeton U.S.A. (2004), see also http://www.nbi.dk/grouptheory.

  4. R.L. Mkrtchyan and A.P. Veselov, Universality in Chern-Simons theory, JHEP 08 (2012) 153 [arXiv:1203.0766] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. P. Vogel, Algebraic structures on modules of diagrams, J. Pure Appl. Algebra 215 (2011) 1292.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Vogel, The universal Lie algebra, (1999).

  7. P. Deligne, La série exceptionnelle des groupes de Lie, C.R. Acad. Sci. Paris Série I 322 (1996)321.

    MathSciNet  MATH  Google Scholar 

  8. P. Deligne and R. de Man, La série exceptionnelle des groupes de Lie II, C.R. Acad. Sci. Paris Série I 323 (1996) 577.

    MATH  Google Scholar 

  9. J.M. Landsberg and L. Manivel, A universal dimension formula for complex simple Lie algebras, Adv. Math. 201 (2006) 379 [math/0401296].

    Article  MathSciNet  MATH  Google Scholar 

  10. J.M. Landsberg and L. Manivel, Triality, exceptional Lie algebras and Deligne dimension formulas, Adv. Math. 171 (2002) 59 [math/0107032].

    Article  MathSciNet  MATH  Google Scholar 

  11. J.M. Landsberg and L. Manivel, Series of Lie groups, Michigan Math. J. 52 (2004) 453.

    Article  MathSciNet  MATH  Google Scholar 

  12. R.L. Mkrtchyan, A.N. Sergeev and A.P. Veselov, Casimir eigenvalues for universal Lie algebra, J. Math. Phys. 53 (2012) 102106 [arXiv:1105.0115].

    Article  MathSciNet  ADS  Google Scholar 

  13. R.L. Mkrtchyan, On the map of Vogels plane, arXiv:1209.5709 [INSPIRE].

  14. V. Periwal, Topological closed string interpretation of Chern-Simons theory, Phys. Rev. Lett. 71 (1993) 1295 [hep-th/9305115] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  16. H. Ooguri and C. Vafa, World sheet derivation of a large-N duality, Nucl. Phys. B 641 (2002) 3 [hep-th/0205297] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Mariño, Chern-Simons theory and topological strings, Rev. Mod. Phys. 77 (2005) 675 [hep-th/0406005] [INSPIRE].

    Article  ADS  Google Scholar 

  18. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. http://functions.wolfram.com/06.11.07.0004.01

  20. V.G. Kac and D.H. Peterson, Infinite dimensional Lie algebras, theta functions and modular forms, Adv. Math. 53 (1984) 125 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  21. A.P.Veselov, communication (Apr., 2013).

  22. R. Gopakumar and C. Vafa, M theory and topological strings. 1, hep-th/9809187 [INSPIRE].

  23. R. Gopakumar and C. Vafa, M theory and topological strings. 2, hep-th/9812127 [INSPIRE].

  24. E.W. Barnes, The theory of the G-function, Quart. J. Pure Appl. Math. 31 (1900) 264.

    MATH  Google Scholar 

  25. C. Ferreira and J.L. Lopez, An asymptotic expansion of the double Gamma function, J. Approx. Theory 111 (2001) 298.

    Article  MathSciNet  MATH  Google Scholar 

  26. http://en.wikipedia.org/wiki/Polylogarithm

  27. S. Pasquetti and R. Schiappa, Borel and stokes nonperturbative phenomena in topological string theory and c = 1 matrix models, Annales Henri Poincaré 11 (2010) 351 [arXiv:0907.4082] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. E.W. Barnes, The theory of the double Gamma function, Phil. Trans. Roy. Soc. London A 196 (1901)265.

    Article  ADS  Google Scholar 

  29. E.W. Barnes, On the theory of the multiple Gamma function, Trans. Cambridge Philos. Soc. 19 (1904)374.

    Google Scholar 

  30. S.N.M. Ruijsenaars, On Barnesmultiple Zeta and Gamma functions, Adv. Math. 156 (2000) 107.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Krefl and A. Schwarz, Refined Chern-Simons versus Vogel universality, Journal of Geometry and Physics 2013 (74) 119 [arXiv:1304.7873] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.L. Mkrtchyan.

Additional information

ArXiv ePrint: 1302.1507

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mkrtchyan, R. Nonperturbative universal Chern-Simons theory. J. High Energ. Phys. 2013, 54 (2013). https://doi.org/10.1007/JHEP09(2013)054

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)054

Keywords

Navigation