Abstract
The electromagnetic nucleon form-factors data are studied with artificial feed forward neural networks. As a result the unbiased model-independent form-factor parametrizations are evaluated together with uncertainties. The Bayesian approach for the neural networks is adapted for χ 2 error-like function and applied to the data analysis. The sequence of the feed forward neural networks with one hidden layer of units is considered. The given neural network represents a particular form-factor parametrization. The so-called evidence (the measure of how much the data favor given statistical model) is computed with the Bayesian framework and it is used to determine the best form factor parametrization.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
F.E. Close, A. Donnachie and G. Shaw, Electromagnetic Interactions and Hadronic Structure, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge (2007).
G. Hohler et al., Analysis of Electromagnetic Nucleon Form-Factors, Nucl. Phys. B 114 (1976) 505 [SPIRES].
E.L. Lomon, Extended Gari-Kruempelmann model fits to nucleon electromagnetic form factors, Phys. Rev. C 64 (2001) 035204 [nucl-th/0104039] [SPIRES].
E.L. Lomon, Effect of recent R(p) and R(n) measurements on extended Gari-Kruempelmann model fits to nucleon electromagnetic form factors, Phys. Rev. C 66 (2002) 045501 [nucl-th/0203081] [SPIRES].
C. Crawford et al., The Role of Mesons in the Electromagnetic Form Factors of the Nucleon, arXiv:1003.0903 [SPIRES].
M.A. Belushkin, H.W. Hammer and U.G. Meissner, Dispersion analysis of the nucleon form factors including meson continua, Phys. Rev. C 75 (2007) 035202 [hep-ph/0608337] [SPIRES].
G.A. Miller, Light front cloudy bag model: Nucleon electromagnetic form factors, Phys. Rev. C 66 (2002) 032201 [nucl-th/0207007] [SPIRES].
F. Cardarelli and S. Simula, SU(6) breaking effects in the nucleon elastic electromagnetic form factors, Phys. Rev. C 62 (2000) 065201 [nucl-th/0006023] [SPIRES].
R.F. Wagenbrunn, S. Boffi, W. Klink, W. Plessas and M. Radici, Covariant nucleon electromagnetic form factors from the Goldstone-boson exchange quark model, Phys. Lett. B 511 (2001) 33 [nucl-th/0010048] [SPIRES].
M.M. Giannini, E. Santopinto and A. Vassallo, An overview of the hypercentral constituent quark model, Prog. Part. Nucl. Phys. 50 (2003) 263 [nucl-th/0301017] [SPIRES].
C.F. Perdrisat, V. Punjabi and M. Vanderhaeghen, Nucleon electromagnetic form factors, Prog. Part. Nucl. Phys. 59 (2007) 694 [hep-ph/0612014] [SPIRES].
G.A. Miller, Transverse Charge Densities, arXiv:1002.0355 [SPIRES].
L. Álvarez-Ruso, Theoretical highlights of neutrino-nucleus interactions, AIP Conf. Proc. 1222 (2010) 42 [arXiv:0911.4112] [SPIRES].
W.M. Alberico, S.M. Bilenky and C. Maieron, Strangeness in the nucleon: Neutrino nucleon and polarized electron nucleon scattering, Phys. Rept. 358 (2002) 227 [hep-ph/0102269] [SPIRES].
D.H. Beck and B.R. Holstein, Nucleon structure and parity-violating electron scattering, Int. J. Mod. Phys. E 10 (2001) 1 [hep-ph/0102053] [SPIRES].
K2K collaboration, M.H. Ahn et al., Measurement of Neutrino Oscillation by the K2K Experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [SPIRES].
Y. Hayato et al., Neutrino Oscillation Experiment at JHF, letter of intent to the JPARC 50 GeV proton synchrotron, Jan. 21, 2003, http://neutrino.kek.jp/jhfnu/loi/loi_JHFcor.pdf
C.H. Llewellyn Smith, Neutrino Reactions at Accelerator Energies, Phys. Rept. 3 (1972) 261 [SPIRES].
K2K collaboration, R. Gran et al., Measurement of the quasi-elastic axial vector mass in neutrino oxygen interactions, Phys. Rev. D 74 (2006) 052002 [hep-ex/0603034] [SPIRES].
MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Measurement of muon neutrino quasi-elastic scattering on carbon, Phys. Rev. Lett. 100 (2008) 032301 [arXiv:0706.0926] [SPIRES].
V. Bernard, L. Elouadrhiri and U.G. Meissner, Axial structure of the nucleon, J. Phys. G 28 (2002) R1 [hep-ph/0107088] [SPIRES].
K.S. Kuzmin, V.V. Lyubushkin and V.A. Naumov, Quasielastic axial-vector mass from experiments on neutrino-nucleus scattering, Eur. Phys. J. C 54 (2008) 517 [arXiv:0712.4384] [SPIRES].
A. Bodek, S. Avvakumov, R. Bradford and H. Budd, Extraction of the Axial Nucleon Form Factor from Neutrino Experiments on Deuterium, J. Phys. Conf. Ser. 110 (2008) 082004.
W.M. Alberico et al., Inelastic nu and anti-nu scattering on nuclei and *strangeness* of the nucleon, Nucl. Phys. A 623 (1997) 471 [hep-ph/9703415] [SPIRES].
K.S. Kim, M.-K. Cheoun and B.G. Yu, Effect of strangeness for neutrino (anti-neutrino) scattering in the quasi-elastic region, Phys. Rev. C 77 (2008) 054604 [SPIRES].
J. Liu, R.D. McKeown and M.J. Ramsey-Musolf, Global Analysis of Nucleon Strange Form Factors at Low Q 2, Phys. Rev. C 76 (2007) 025202 [arXiv:0706.0226] [SPIRES].
R.D. Young, J. Roche, R.D. Carlini and A.W. Thomas, Extracting nucleon strange and anapole form factors from world data, Phys. Rev. Lett. 97 (2006) 102002 [nucl-ex/0604010] [SPIRES].
P.E. Bosted, An Empirical fit to the nucleon electromagnetic form-factors, Phys. Rev. C 51 (1995) 409 [SPIRES].
E.J. Brash, A. Kozlov, S. Li and G.M. Huber, New empirical fits to the proton electromagnetic form factors, Phys. Rev. C 65 (2002) 051001 [hep-ex/0111038] [SPIRES].
H.S. Budd, A. Bodek and J. Arrington, Modeling quasi-elastic form factors for electron and neutrino scattering, presented at 2nd International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NUINT 02), Irvine, California, 12-15 Dec. 2002, [hep-ex/0308005] [SPIRES].
J. Arrington, How well do we know the electromagnetic form factors of the proton?, Phys. Rev. C 68 (2003) 034325 [nucl-ex/0305009] [SPIRES].
J.J. Kelly, Simple parametrization of nucleon form factors, Phys. Rev. C 70 (2004) 068202 [SPIRES].
J. Arrington and I. Sick, Precise determination of low-Q nucleon electromagnetic form factors and their impact on parity-violating e p elastic scattering, Phys. Rev. C 76 (2007) 035201 [nucl-th/0612079] [SPIRES].
A. Bodek, S. Avvakumov, R. Bradford and H.S. Budd, Vector and Axial Nucleon Form Factors:A Duality Constrained Parameterization, Eur. Phys. J. C 53 (2008) 349 [arXiv:0708.1946] [SPIRES].
S. Galster et al., Elastic electron-deuteron scattering and the electric neutron form-factor at four momentum transfers 5 fm −2 < q 2 < 14 fm −2, Nucl. Phys. B 32 (1971) 221 [SPIRES].
A.F. Krutov and V.E. Troitsky, Extraction of the neutron charge form factor from the charge form factor of deuteron, Eur. Phys. J. A 16 (2003) 285 [hep-ph/0202183] [SPIRES].
W.M. Alberico, S.M. Bilenky, C. Giunti and K.M. Graczyk, Electromagnetic form factors of the nucleon: new fit and analysis of uncertainties, Phys. Rev. C 79 (2009) 065204 [arXiv:0812.3539] [SPIRES].
C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press (2008).
S. Geman, E. Bienenstock, and R. Doursat, Neural networks and the bias/variance dilema, Neural Comput. 4 (1992) 1.
B. Denby, Neural networks and cellular automata in experimental high energy physics, Comput. Phys. Commun. 49 (1988) 429.
B. Mellado, W. Quayle and S.L. Wu, Prospects for the observation of a Higgs boson with \( H \rightarrow {\tau^{+} }{\tau^{-} } \rightarrow {\ell^{+} }{\ell^{-} } \)
associated with one jet at the LHC, Phys. Lett. B 611 (2005) 60 [hep-ph/0406095] [SPIRES].
K. Kurek, E. Rondio, R. Sulej and K. Zaremba, Application of the neural networks in events classification in the measurement of spin structure of the deuteron, Meas. Sci. Technol. 18 (2007) 2486.
S. Forte, L. Garrido, J.I. Latorre and A. Piccione, Neural network parametrization of deep-inelastic structure functions, JHEP 05 (2002) 062 [hep-ph/0204232] [SPIRES].
J. Damgov and L. Litov, A pplication of neural networks for energy reconstruction, Nucl. Instrum. Meth. A 482 (2002) 776 [hep-ex/0012003] [SPIRES].
NNPDF collaboration, Site of the NNPDFs collaboration http://sophia.ecm.ub.es/nnpdf/.
NNPDF collaboration, L. Del Debbio, S. Forte, J.I. Latorre, A. Piccione and J. Rojo, Unbiased determination of the proton structure function F2(p) with faithful uncertainty estimation, JHEP 03 (2005) 080 [hep-ph/0501067] [SPIRES].
NNPDF collaboration, L. Del Debbio, S. Forte, J.I. Latorre, A. Piccione and J. Rojo, Neural network determination of parton distributions: the nonsinglet case, JHEP 03 (2007) 039 [hep-ph/0701127] [SPIRES].
NNPDF collaboration, R.D. Ball et al., A determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [Erratum ibid. B816 (2009) 293] [arXiv:0808.1231] [SPIRES].
NNPDF collaboration, R.D. Ball et al., Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties, JHEP 05 (2010) 075 [arXiv:0912.2276] [SPIRES].
R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [SPIRES].
D.J.C. MacKay, Bayesian interpolation, Neural Comput. 4 (1992) 415.
D.J.C. MacKay, A practical Bayesian framework for backpropagation networks, Neural Comput. 4 (1992) 448.
D.J.C. MacKay, Bayesian methods for backpropagation networks, in Models of Neural Networks III, section 6 E. Domany, J.L. van Hemmen and K. Schulten eds., Springer-Verlag, New York (1994).
R. Sulej, NetMaker, http://www.ire.pw.edu.pl/∼rsulej/NetMaker/ (written in C#); raw fit results presented in this paper available at http://www.ire.pw.edu.pl/∼rsulej/NetMaker/index.php?pg=h33.
V. Kurková, Kolmogorov’s theorem and multilayer neural networks, Neural Networks 5 (1992) 501.
A.S. Weigend, D.E. Rumelhart and B.A. Huberman, Generalization by Weight-Elimination with Application to Forecasting, proceedings of the Conference on Advances in Neural Information Processing Systems, 3 (1990) 875, Denver, Colorado, U.S.A.
K. Hornik, Approximation Capabilities of Multilayer Feedforward Networks, Neural Networks 4 (1991) 251.
M. Leshno et al., Multilayer Feedforward Networks With a Nonpolynomial Activation Function Can Approximate Any Function, Neural Networks 6 (1993) 861.
D.E. Rumelhart et al., Learning internal representations by error propagation, in monograph D.E. Rumelhart and J.A. McClelland, Parallel Distribuited Processing: Exploration in the Microstructure of Cognition, 1 (1986) 318, The MIT Press.
K. Levenberg, A Method for the Solution of Certain Non-Linear Problems in Least Squares, Q. Appl. Math. 2 (1944) 164.
D. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, SIAM J. Appl. Math. 11 (1963) 431.
S. Fahlman, An Empirical Study of Learning Speed in Back-Propagation Networks, CMU-CS-88-162, School of Computer Science, Carnegie Mellon University (1988).
Ch. Igel, Improving the Rprop Learning Algorithm, proceedings of the Second International Symposium on Neural Computation, NC’2000, ICSC Academic Press (2000), pp. 115-121.
H.H. Thodberg, Ace of Bayes: application of neural networks with pruning, Technical Report 1132E, The Danish Meat Research Institute, Maglegaardsvej 2, DK-4000 Roskilde, Denmark (1993).
R.M. Neal, Bayesian Learning for Neural Networks, Ph.D thesis, University of Toronto, Canada.
C.M. Bishop, Exact calculation of the Hessian matrix for the multilayer perceptron, Neural Comput. 4 (1992) 494.
S.F. Gull, Bayesian inductive inference and maximum entropy. in Maximum-Entropy and Bayesian Methods in Science and Engineering, G.J. Ericson and C.R. Smith eds., vol. 1: Fundations, Dordrecht: Kluwer (1988), pp 53-74.
S.F. Gull, Development in maximum entropy data analysis, in Maximum Entropy and Bayesian Methods, J. Skilling ed., Dordrecht: Kluwer, Cambridge (1988), pp. 53–71.
P.M. Williams, Bayesian Regularization and Pruning using a Laplace Prior, Neural Comput. 7 (1995) 117.
J. Arrington, W. Melnitchouk and J.A. Tjon, Global analysis of proton elastic form factor data with two-photon exchange corrections, Phys. Rev. C 76 (2007) 035205 [arXiv:0707.1861] [SPIRES].
I.A. Qattan et al., Precision Rosenbluth measurement of the proton elastic form factors, Phys. Rev. Lett. 94 (2005) 142301 [nucl-ex/0410010] [SPIRES].
O. Gayou et al., Measurements of the elastic electromagnetic form factor ratio mu pGEp/GMp via polarization transfer, Phys. Rev. C 64 (2001) 038202 [SPIRES];
P.A.M. Guichon and M. Vanderhaeghen, How to reconcile the Rosenbluth and the polarization transfer method in the measurement of the proton form factors, Phys. Rev. Lett. 91 (2003) 142303 [hep-ph/0306007] [SPIRES].
P.G. Blunden, W. Melnitchouk and J.A. Tjon, Two-photon exchange and elastic electron proton scattering, Phys. Rev. Lett. 91 (2003) 142304 [nucl-th/0306076] [SPIRES].
Y.C. Chen, A. Afanasev, S.J. Brodsky, C.E. Carlson and M. Vanderhaeghen, Partonic calculation of the two-photon exchange contribution to elastic electron proton scattering at large momentum transfer, Phys. Rev. Lett. 93 (2004) 122301 [hep-ph/0403058] [SPIRES].
A.V. Afanasev, S.J. Brodsky, C.E. Carlson, Y.-C. Chen and M. Vanderhaeghen, The two-photon exchange contribution to elastic electron nucleon scattering at large momentum transfer, Phys. Rev. D 72 (2005) 013008 [hep-ph/0502013] [SPIRES];
C.E. Carlson and M. Vanderhaeghen, Two-photon physics in hadronic processes, Ann. Rev. Nucl. Part. Sci. 57 (2007) 171 [hep-ph/0701272] [SPIRES].
L. Andivahis et al., Measurements of the electric and magnetic form-factors of the proton from Q 2 =1.75 to 8.83 (GeV/c)2, Phys. Rev. D 50 (1994) 5491 [SPIRES].
W. Bartel et al., Measurement of proton and neutron electromagnetic form-factors at squared four momentum transfers up to 3 GeV/c 2, Nucl. Phys. B 58 (1973) 429 [SPIRES].
C. Berger, V. Burkert, G. Knop, B. Langenbeck and K. Rith, Electromagnetic form-factors of the proton at squared four momentum transfers between 10 fm −2 and 50 fm −2, Phys. Lett. B 35 (1971) 87 [SPIRES].
F. Borkowski, P. Peuser, G.G. Simon, V.H. Walther and R.D. Wendling, Electromagnetic Form-Factors of the Proton at Low Four-Momentum Transfer, Nucl. Phys. B 93 (1975) 461 [SPIRES].
K.M. Hanson et al., Large angle quasielastic electron-deuteron scattering, Phys. Rev. D 8 (1973) 753 [SPIRES].
L.E. Price et al., Backward-angle electron-proton elastic scattering and proton electromagnetic form-factors, Phys. Rev. D 4 (1971) 45 [SPIRES].
R.C. Walker et al., Measurements of the proton elastic form-factors for 1 ≤ Q 2 ≤ 3(GeV/c)2 at SLAC, Phys. Rev. D 49 (1994) 5671 [SPIRES].
P.E. Bosted et al., Measurements of the deuteron and proton magnetic form-factors at large momentum transfers, Phys. Rev. C 42 (1990) 38 [SPIRES].
A.F. Sill et al., Measurements of elastic electron-proton scattering at large momentum transfer, Phys. Rev. D 48 (1993) 29 [SPIRES].
G.G. Simon, C. Schmitt, F. Borkowski and V.H. Walther, Absolute electron Proton Cross-Sections at Low Momentum Transfer Measured with a High Pressure Gas Target System, Nucl. Phys. A 333 (1980) 381 [SPIRES].
J.J. Murphy, Y.M. Shin and D.M. Skopik, Proton form factor from 0.15 to 0.79 fm −2, Phys. Rev. C9 (1974) 2125 [SPIRES].
Electron-nucleon scattering in resonance regions, http://www.jlab.org/resdata
BLAST collaboration, E. Geis et al., The Charge Form Factor of the Neutron at Low Momentum Transfer from the \( ^2\vec{\text{H}}\left( \vec{\text{e}},\;\text{e}^{\prime}\text{n} \right){\text{p}} \) Reaction, Phys. Rev. Lett. 101 (2008) 042501 [arXiv:0803.3827] [SPIRES].
Jefferson Lab E95-001 collaboration, W. Xu et al., PWIA extraction of the neutron magnetic form factor from quasi-elastic \( ^3\vec{\text{H}}{\text{e}}\left( {\vec{e},\;e^{\prime}} \right) \) at Q 2 = 0.3 (GeV/c) 2 to 0.6-(GeV/c) 2, Phys. Rev. C 67 (2003) 012201 [nucl-ex/0208007] [SPIRES].
K. Graczyk, Krzysztof Graczyk Homepage, http://www.ift.uni.wroc.pl/∼kgraczyk/nn.html.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1006.0342
Supported by: the Ministry of Science and Higher Education project DWM/57/T2K/2007 as well as the Polish Ministry of Science Grant project number: NN202 368439. (Krzysztof M. Graczyk)
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Graczyk, K.M., Płonski, P. & Sulej, R. Neural network parameterizations of electromagnetic nucleon form-factors. J. High Energ. Phys. 2010, 53 (2010). https://doi.org/10.1007/JHEP09(2010)053
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2010)053