Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

A global view on the Higgs self-coupling

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 18 September 2017
  • Volume 2017, article number 69, (2017)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
A global view on the Higgs self-coupling
Download PDF
  • S. Di Vita  ORCID: orcid.org/0000-0002-9998-31011,
  • C. Grojean1,2,
  • G. Panico3,
  • M. Riembau1,3 &
  • …
  • T. Vantalon1,3 
  • 1011 Accesses

  • 88 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The Higgs self-coupling is notoriously intangible at the LHC. It was recently proposed to probe the trilinear Higgs interaction through its radiative corrections to single-Higgs processes. This approach however requires to disentangle these effects from those associated to deviations of other Higgs-couplings to fermions and gauge bosons. We show that a global fit exploiting only single-Higgs inclusive data suffers from degeneracies that prevent one from extracting robust bounds on each individual coupling. We show how the inclusion of double-Higgs production via gluon fusion, and the use of differential measure-ments in the associated single-Higgs production channels W H, ZH and ttH, can help to overcome the deficiencies of a global Higgs-couplings fit. In particular, we bound the vari-ations of the Higgs trilinear self-coupling relative to its SM value to the interval [0.1, 2.3] at 68% confidence level at the high-luminosity LHC, and we discuss the robustness of our results against various assumptions on the experimental uncertainties and the underlying new physics dynamics. We also study how to obtain a parametrically enhanced deviation of the Higgs self-couplings and we estimate how large this deviation can be in a self-consistent effective field theory framework.

Article PDF

Download to read the full article text

Similar content being viewed by others

Trilinear Higgs coupling determination via single-Higgs differential measurements at the LHC

Article Open access 19 December 2017

Sensitivity to triple Higgs couplings via di-Higgs production in the 2HDM at the (HL-)LHC

Article Open access 09 November 2023

Measurement of the triple Higgs coupling at a HE-LHC

Article Open access 11 March 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Global Governance
  • Global South Methods and Theory
  • Particle Physics
  • Self incompatability
  • Theoretical Nuclear Physics
  • Theoretical Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. F. Bordry, LHC status and plans, talk given at 52nd Reconstres de Moriond QCD, March 18-25, La Thuile, Italy (2017).

  2. Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  3. LHC Higgs Cross Section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].

  4. M. McCullough, An indirect model-dependent probe of the Higgs self-coupling, Phys. Rev. D 90 (2014) 015001 [arXiv:1312.3322] [INSPIRE].

  5. M. Gorbahn and U. Haisch, Indirect probes of the trilinear Higgs coupling: gg → h and h→γγ, JHEP 10 (2016) 094 [arXiv:1607.03773] [INSPIRE].

    Article  ADS  Google Scholar 

  6. G. Degrassi, P.P. Giardino, F. Maltoni and D. Pagani, Probing the Higgs self coupling via single Higgs production at the LHC, JHEP 12 (2016) 080 [arXiv:1607.04251] [INSPIRE].

    Article  ADS  Google Scholar 

  7. W. Bizon, M. Gorbahn, U. Haisch and G. Zanderighi, Constraints on the trilinear Higgs coupling from vector boson fusion and associated Higgs production at the LHC, JHEP 07 (2017) 083 [arXiv:1610.05771] [INSPIRE].

    Article  ADS  Google Scholar 

  8. G. Degrassi, M. Fedele and P.P. Giardino, Constraints on the trilinear Higgs self coupling from precision observables, JHEP 04 (2017) 155 [arXiv:1702.01737] [INSPIRE].

    Article  ADS  Google Scholar 

  9. G.D. Kribs, A. Maier, H. Rzehak, M. Spannowsky and P. Waite, Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interaction, Phys. Rev. D 95 (2017) 093004 [arXiv:1702.07678] [INSPIRE].

    ADS  Google Scholar 

  10. ATLAS collaboration, Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2014-016 (2014).

  11. ATLAS collaboration, Prospective results for vector-boson fusion-mediated Higgs-boson searches in the four lepton final state at the High Luminosity Large Hadron Collider, ATL-PHYS-PUB-2016-008 (2016).

  12. A. Falkowski, Effective field theory approach to LHC Higgs data, Pramana 87 (2016) 39 [arXiv:1505.00046] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Falkowski, Higgs basis: proposal for an EFT basis choice for LHC HXSWG, LHCHXSWG-INT-2015-001 (2015).

  14. A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Efrati, A. Falkowski and Y. Soreq, Electroweak constraints on flavorful effective theories, JHEP 07 (2015) 018 [arXiv:1503.07872] [INSPIRE].

    Article  ADS  Google Scholar 

  16. O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the standard model effective field theory at NLO in QCD, JHEP 05 (2016) 052 [arXiv:1601.08193] [INSPIRE].

    Article  ADS  Google Scholar 

  17. D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev. D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].

    ADS  Google Scholar 

  18. F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD, JHEP 10 (2016) 123 [arXiv:1607.05330] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].

    Article  ADS  Google Scholar 

  20. ATLAS collaboration, Search for new phenomena in \( t\overline{t} \) final states with additional heavy-flavour jets in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-104 (2016).

  21. R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the validity of the effective field theory approach to SM precision tests, JHEP 07 (2016) 144 [arXiv:1604.06444] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].

    ADS  Google Scholar 

  23. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

  24. G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) 1 [arXiv:1506.01961].

    Article  MATH  Google Scholar 

  25. R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Report (2017) 255 [arXiv:1606.09408] [INSPIRE].

  26. J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable effects of general new scalar particles, JHEP 04 (2015) 078 [arXiv:1412.8480] [INSPIRE].

    Article  Google Scholar 

  27. A. Falkowski, The validity of theories with a modified triple higgs coupling, talk given at HH Subgroup Meeting, October 7, CERN, Geneva, Switzerland (2016).

  28. A. Falkowski and R. Rattazzi, Which EFT?, to appear.

  29. CMS collaboration, Projected Performance of an Upgraded CMS Detector at the LHC and HL-LHC: Contribution to the Snowmass Process, in the proceedings of the Community Summer Study 2013: snowmass on the Mississippi (CSS2013), July 29-August 6, Minneapolis, U.S.A. (2013), arXiv:1307.7135 [INSPIRE].

  30. M.E. Peskin, Estimation of LHC and ILC capabilities for precision Higgs boson coupling measurements, in the proceedings of the Community Summer Study 2013: snowmass on the Mississippi (CSS2013), July 29-August 6, Minneapolis, U.S.A. (2013), arXiv:1312.4974 [INSPIRE].

  31. C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].

    Article  ADS  Google Scholar 

  32. ATLAS collaboration, Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2013-014 (2013).

  33. C. Grojean, E. Salvioni, M. Schlaffer and A. Weiler, Very boosted Higgs in gluon fusion, JHEP 05 (2014) 022 [arXiv:1312.3317] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Azatov, C. Grojean, A. Paul and E. Salvioni, Taming the off-shell Higgs boson, Zh. Eksp. Teor. Fiz. 147 (2015) 410 [arXiv:1406.6338] [INSPIRE].

    Google Scholar 

  35. A. Azatov, C. Grojean, A. Paul and E. Salvioni, Resolving gluon fusion loops at current and future hadron colliders, JHEP 09 (2016) 123 [arXiv:1608.00977] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Butter et al., The gauge-Higgs legacy of the LHC run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca and M. Son, Anomalous triple gauge couplings in the effective field theory approach at the LHC, JHEP 02 (2017) 115 [arXiv:1609.06312] [INSPIRE].

    Article  ADS  Google Scholar 

  38. ATLAS collaboration, Update of the prospects for the H → Zγ search at the High-Luminosity LHC, ATL-PHYS-PUB-2014-006 (2014).

  39. N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].

    Article  ADS  Google Scholar 

  40. F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].

    ADS  Google Scholar 

  41. J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gg → e − e + μ − μ +, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].

    Article  ADS  Google Scholar 

  42. CMS collaboration, Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs, Phys. Lett. B 736 (2014) 64 [arXiv:1405.3455] [INSPIRE].

  43. ATLAS collaboration, Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and W W final states with the ATLAS detector, Eur. Phys. J. C 75 (2015) 335 [arXiv:1503.01060] [INSPIRE].

  44. C. Englert and M. Spannowsky, Limitations and opportunities of off-shell coupling measurements, Phys. Rev. D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].

  45. G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle and J.-B. Flament, Higgs couplings: disentangling New Physics with off-shell measurements, Phys. Rev. Lett. 113 (2014) 201802 [arXiv:1406.1757] [INSPIRE].

    Article  ADS  Google Scholar 

  46. ATLAS collaboration, Off-shell Higgs signal strength measurement using high-mass H →ZZ →4l events at high luminosity LHC,ATL-PHYS-PUB-2015-024 (2015).

  47. S. Biswas, E. Gabrielli and B. Mele, Single top and Higgs associated production as a probe of the Htt coupling sign at the LHC, JHEP 01 (2013) 088 [arXiv:1211.0499] [INSPIRE].

    Article  ADS  Google Scholar 

  48. M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP 05 (2013) 022 [arXiv:1211.3736] [INSPIRE].

    ADS  Google Scholar 

  49. F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Higgs production in association with a single top quark at the LHC, Eur. Phys. J. C 75 (2015) 267 [arXiv:1504.00611] [INSPIRE].

    Article  ADS  Google Scholar 

  50. F. Bishara, U. Haisch, P.F. Monni and E. Re, Constraining light-quark Yukawa couplings from Higgs distributions, Phys. Rev. Lett. 118 (2017) 121801 [arXiv:1606.09253] [INSPIRE].

    Article  ADS  Google Scholar 

  51. G. Bonner and H.E. Logan, Constraining the Higgs couplings to up and down quarks using production kinematics at the CERN Large Hadron Collider, arXiv:1608.04376 [INSPIRE].

  52. H. Khanpour, S. Khatibi and M. Mohammadi Najafabadi, Probing Higgs boson couplings in H+γ production at the LHC,arXiv:1702.05753[INSPIRE].

  53. M. Farina, C. Grojean and E. Salvioni, (Dys)zphilia or a custodial breaking Higgs at the LHC, JHEP 07 (2012) 012 [arXiv:1205.0011] [INSPIRE].

  54. Higgs cross section working group, https://cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG.

  55. Q.-H. Cao, Y. Liu and B. Yan, Measuring trilinear Higgs coupling in WHH and ZHH productions at the high-luminosity LHC, Phys. Rev. D 95 (2017) 073006 [arXiv:1511.03311] [INSPIRE].

  56. V.D. Barger, T. Han and R.J.N. Phillips, Double Higgs boson bremsstrahlung from W and Z bosons at supercolliders, Phys. Rev. D 38 (1988) 2766 [INSPIRE].

    ADS  Google Scholar 

  57. M. Moretti, S. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, Higgs boson self-couplings at the LHC as a probe of extended Higgs sectors, JHEP 02 (2005) 024 [hep-ph/0410334] [INSPIRE].

  58. J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].

  59. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    Article  ADS  Google Scholar 

  60. M.J. Dolan, C. Englert, N. Greiner and M. Spannowsky, Further on up the road: hhjj production at the LHC, Phys. Rev. Lett. 112 (2014) 101802 [arXiv:1310.1084] [INSPIRE].

    Article  ADS  Google Scholar 

  61. M.J. Dolan, C. Englert, N. Greiner, K. Nordstrom and M. Spannowsky, hhjj production at the LHC, Eur. Phys. J. C 75 (2015) 387 [arXiv:1506.08008] [INSPIRE].

  62. F. Bishara, R. Contino and J. Rojo, Higgs pair production in vector-boson fusion at the LHC and beyond, Eur. Phys. J. C 77 (2017) 481 [arXiv:1611.03860] [INSPIRE].

    Article  ADS  Google Scholar 

  63. U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].

  64. R. Grober and M. Muhlleitner, Composite Higgs boson pair production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].

    Article  ADS  Google Scholar 

  65. R. Contino et al., Anomalous couplings in double Higgs production, JHEP 08 (2012) 154 [arXiv:1205.5444] [INSPIRE].

    Article  ADS  Google Scholar 

  66. V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-pair production and measurement of the triscalar coupling at LHC(8, 14), Phys. Lett. B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE].

    Article  ADS  Google Scholar 

  67. H.-J. He, J. Ren and W. Yao, Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders, Phys. Rev. D 93 (2016) 015003 [arXiv:1506.03302] [INSPIRE].

  68. ATLAS collaboration, Prospects for measuring Higgs pair production in the channel \( H\left(\to \gamma \gamma \right)H\left(\to b\overline{b}\right) \) using the ATLAS detector at the HL-LHC, ATL-PHYS-PUB-2014-019 (2014).

  69. ATLAS collaboration, Study of the double Higgs production channel \( H\left(\to b\overline{b}\right)H\left(\to \gamma \gamma \right) \) with the ATLAS experiment at the HL-LHC, ATL-PHYS-PUB-2017-001 (2017).

  70. U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: a comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [INSPIRE].

  71. M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].

    Article  ADS  Google Scholar 

  72. D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the \( \left(b\overline{b}\right)\left(b\overline{b}\right) \) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].

  73. ATLAS collaboration, Projected sensitivity to non-resonant Higgs boson pair production in the \( b\overline{b}b\overline{b} \) final state using proton-proton collisions at HL-LHC with the ATLAS detector, ATL-PHYS-PUB-2016-024 (2016).

  74. A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the bbW+W− channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].

  75. A.J. Barr, M.J. Dolan, C. Englert and M. Spannowsky, Di-Higgs final states augMT2ed — Selecting hh events at the high luminosity LHC, Phys. Lett. B 728 (2014) 308 [arXiv:1309.6318] [INSPIRE].

    Article  ADS  Google Scholar 

  76. F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D = 6 extension of the SM, JHEP 04 (2015) 167 [arXiv:1410.3471] [INSPIRE].

    Article  ADS  Google Scholar 

  77. Q.-H. Cao, B. Yan, D.-M. Zhang and H. Zhang, Resolving the degeneracy in single Higgs production with Higgs pair production, Phys. Lett. B 752 (2016) 285 [arXiv:1508.06512] [INSPIRE].

    Article  ADS  Google Scholar 

  78. Q.-H. Cao, G. Li, B. Yan, D.-M. Zhang and H. Zhang, Double Higgs production at the 14 TeV LHC and the 100 TeV pp-collider, arXiv:1611.09336 [INSPIRE].

  79. S. Boselli et al., Higgs decay into four charged leptons in the presence of dimension-six operators, arXiv:1703.06667 [INSPIRE].

  80. A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  81. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  82. A. Alloul, B. Fuks and V. Sanz, Phenomenology of the Higgs Effective Lagrangian via FEYNRULES, JHEP 04 (2014) 110 [arXiv:1310.5150] [INSPIRE].

    Article  ADS  Google Scholar 

  83. C. Hartmann and M. Trott, Higgs decay to two photons at one loop in the standard model effective field theory, Phys. Rev. Lett. 115 (2015) 191801 [arXiv:1507.03568] [INSPIRE].

    Article  ADS  Google Scholar 

  84. E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C 74 (2014) 3103 [arXiv:1405.3982] [INSPIRE].

    Article  Google Scholar 

  85. E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. DESY, Notkestraße 85, D-22607, Hamburg, Germany

    S. Di Vita, C. Grojean, M. Riembau & T. Vantalon

  2. Institut für Physik, Humboldt-Universität zu Berlin, D-12489, Berlin, Germany

    C. Grojean

  3. IFAE, Barcelona Institute of Science and Technology (BIST) Campus UAB, E-08193, Bellaterra, Spain

    G. Panico, M. Riembau & T. Vantalon

Authors
  1. S. Di Vita
    View author publications

    Search author on:PubMed Google Scholar

  2. C. Grojean
    View author publications

    Search author on:PubMed Google Scholar

  3. G. Panico
    View author publications

    Search author on:PubMed Google Scholar

  4. M. Riembau
    View author publications

    Search author on:PubMed Google Scholar

  5. T. Vantalon
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to S. Di Vita.

Additional information

ArXiv ePrint: 1704.01953

On leave from Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain. (C. Grojean)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Vita, S., Grojean, C., Panico, G. et al. A global view on the Higgs self-coupling. J. High Energ. Phys. 2017, 69 (2017). https://doi.org/10.1007/JHEP09(2017)069

Download citation

  • Received: 19 May 2017

  • Revised: 21 July 2017

  • Accepted: 21 August 2017

  • Published: 18 September 2017

  • DOI: https://doi.org/10.1007/JHEP09(2017)069

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Effective Field Theories
  • Higgs Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature