Skip to main content
Log in

Two-loop master integrals for \( q\overline{q}\to VV \): the planar topologies

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The two-loop QCD corrections to vector boson pair production at hadron colliders involve a new class of Feynman integrals: two-loop four-point functions with two off-shell external legs. We describe their reduction to a small set of master integrals by solving linear relations among them. We then use differential equations in the external invariants to compute all master integrals that are relevant to planar Feynman amplitudes. Our results are expressed analytically in terms of generalized harmonic polylogarithms. The calculation relies heavily on techniques that exploit the algebraic structure of these functions, which we describe in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Accomando and A. Kaiser, Electroweak corrections and anomalous triple gauge-boson couplings in W + W and W ± Z production at the LHC, Phys. Rev. D 73 (2006) 093006 [hep-ph/0511088] [INSPIRE].

    ADS  Google Scholar 

  2. E. Accomando, A. Denner and A. Kaiser, Logarithmic electroweak corrections to gauge-boson pair production at the LHC, Nucl. Phys. B 706 (2005) 325 [hep-ph/0409247] [INSPIRE].

    Article  ADS  Google Scholar 

  3. E. Accomando, A. Denner and C. Meier, Electroweak corrections to Wγ and Zγ production at the LHC, Eur. Phys. J. C 47 (2006) 125 [hep-ph/0509234] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to \( \mathcal{O} \)(α 3) accuracy, arXiv:1305.5402 [INSPIRE].

  5. J. Ohnemus, Order α s calculations of hadronic W ± γ and Zγ production, Phys. Rev. D 47 (1993) 940 [INSPIRE].

    ADS  Google Scholar 

  6. U. Baur, T. Han and J. Ohnemus, QCD corrections to hadronic Wγ production with nonstandard WWγ couplings, Phys. Rev. D 48 (1993) 5140 [hep-ph/9305314] [INSPIRE].

    ADS  Google Scholar 

  7. U. Baur, T. Han and J. Ohnemus, QCD corrections and anomalous couplings in Zγ production at hadron colliders, Phys. Rev. D 57 (1998) 2823 [hep-ph/9710416] [INSPIRE].

    ADS  Google Scholar 

  8. L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s ) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].

    Article  ADS  Google Scholar 

  9. L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].

    ADS  Google Scholar 

  10. S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].

    Article  ADS  Google Scholar 

  11. V. Del Duca, F. Maltoni, Z. Nagy and Z. Trócsányi, QCD radiative corrections to prompt diphoton production in association with a jet at hadron colliders, JHEP 04 (2003) 059 [hep-ph/0303012] [INSPIRE].

    Article  ADS  Google Scholar 

  12. T. Gehrmann, N. Greiner and G. Heinrich, Photon isolation effects at NLO in γγ + jet final states in hadronic collisions, JHEP 06 (2013) 058 [arXiv:1303.0824] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to WW+jet production at hadron colliders, Phys. Rev. Lett. 100 (2008) 062003 [arXiv:0710.1577] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to \( {pp \left/ {{p\overline{p}}} \right.} \)WW+jet+X including leptonic W-boson decays, Nucl. Phys. B 826 (2010) 18 [arXiv:0908.4124] [INSPIRE].

    Article  ADS  Google Scholar 

  15. T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD corrections to ZZ+ jet production at hadron colliders, Phys. Lett. B 683 (2010) 154 [arXiv:0911.3181] [INSPIRE].

    Article  ADS  Google Scholar 

  16. F. Campanario, C. Englert, M. Spannowsky and D. Zeppenfeld, NLO-QCD corrections to Wγ j production, Europhys. Lett. 88 (2009) 11001 [arXiv:0908.1638] [INSPIRE].

    Article  ADS  Google Scholar 

  17. F. Campanario, C. Englert and M. Spannowsky, Precise predictions for (non-standard) Wγ + jet production, Phys. Rev. D 83 (2011) 074009 [arXiv:1010.1291] [INSPIRE].

    ADS  Google Scholar 

  18. F. Campanario, C. Englert, S. Kallweit, M. Spannowsky and D. Zeppenfeld, NLO QCD corrections to WZ+jet production with leptonic decays, JHEP 07 (2010) 076 [arXiv:1006.0390] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Z. Bern, A. De Freitas and L.J. Dixon, Two loop amplitudes for gluon fusion into two photons, JHEP 09 (2001) 037 [hep-ph/0109078] [INSPIRE].

    Article  ADS  Google Scholar 

  20. T. Gehrmann and L. Tancredi, Two-loop QCD helicity amplitudes for \( q\overline{q} \)W ± γ and \( q\overline{q} \)Z 0 γ, JHEP 02 (2012) 004 [arXiv:1112.1531] [INSPIRE].

    Article  ADS  Google Scholar 

  21. T. Gehrmann, L. Tancredi and E. Weihs, Two-loop QCD helicity amplitudes for ggZg and gg, JHEP 04 (2013) 101 [arXiv:1302.2630] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Chachamis, M. Czakon and D. Eiras, W pair production at the LHC. I. Two-loop corrections in the high energy limit, JHEP 12 (2008) 003 [arXiv:0802.4028] [INSPIRE].

    Article  ADS  Google Scholar 

  23. F. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. K. Chetyrkin and F. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

    Article  ADS  Google Scholar 

  25. S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP 07 (2004) 046 [hep-ph/0404258] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Smirnov, Algorithm FIREFeynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].

    Article  ADS  Google Scholar 

  28. C. Studerus, Reduze-Feynman integral reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].

  30. A. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].

    ADS  Google Scholar 

  32. M. Caffo, H. Czyz, S. Laporta and E. Remiddi, The master differential equations for the two loop sunrise selfmass amplitudes, Nuovo Cim. A 111 (1998) 365 [hep-th/9805118] [INSPIRE].

    ADS  Google Scholar 

  33. T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: the nonplanar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].

    Article  ADS  Google Scholar 

  36. R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maître and C. Studerus, Two-loop fermionic corrections to heavy-quark pair production: the quark-antiquark channel, JHEP 07 (2008) 129 [arXiv:0806.2301] [INSPIRE].

    Article  ADS  Google Scholar 

  37. R. Bonciani, A. Ferroglia, T. Gehrmann and C. Studerus, Two-loop planar corrections to heavy-quark pair production in the quark-antiquark channel, JHEP 08 (2009) 067 [arXiv:0906.3671] [INSPIRE].

    Article  ADS  Google Scholar 

  38. R. Bonciani, A. Ferroglia, T. Gehrmann, A. Manteuffel and C. Studerus, Two-loop leading color corrections to heavy-quark pair production in the gluon fusion channel, JHEP 01 (2011) 102 [arXiv:1011.6661] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. von Manteuffel and C. Studerus, Massive planar and non-planar double box integrals for light Nf contributions to ggtt, arXiv:1306.3504 [INSPIRE].

  40. F. Brown, The massless higher-loop two-point function, Commun. Math. Phys. 287 (2009) 925 [arXiv:0804.1660] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N 3 LO, JHEP 07 (2013) 003 [arXiv:1302.4379] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  44. Wolfram Research, Mathematica, 9.0 ed., Champaign U.S.A. (2013).

  45. J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

    Article  ADS  Google Scholar 

  46. J. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point functions, Nucl. Phys. B 640 (2002) 379 [hep-ph/0207020] [INSPIRE].

    Article  ADS  Google Scholar 

  48. D. Zagier, Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields, in Arithmetic Algebraic Geometry, J.G. v.d.Geer and F. Oort eds., Prog. Math. 89, Birkhäuser, U.S.A. (1991), pg. 391.

  49. A.B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995) 197.

    Article  MathSciNet  MATH  Google Scholar 

  50. A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. A. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005) 209 [math/0208144] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  52. C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, arXiv:math/0103059.

  56. F. Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [INSPIRE].

  57. U. Aglietti and R. Bonciani, Master integrals with 2 and 3 massive propagators for the 2 loop electroweak form-factorplanar case, Nucl. Phys. B 698 (2004) 277 [hep-ph/0401193] [INSPIRE].

    Article  ADS  Google Scholar 

  58. R. Bonciani, P. Mastrolia and E. Remiddi, Vertex diagrams for the QED form-factors at the two loop level, Nucl. Phys. B 661 (2003) 289 [Erratum ibid. B 702 (2004) 359] [hep-ph/0301170] [INSPIRE].

  59. R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi and J. van der Bij, Planar box diagram for the N F = 1 two loop QED virtual corrections to Bhabha scattering, Nucl. Phys. B 681 (2004) 261 [Erratum ibid. B 702 (2004) 364] [hep-ph/0310333] [INSPIRE].

  60. T. Birthwright, E.W.N. Glover and P. Marquard, Master integrals for massless two-loop vertex diagrams with three offshell legs, JHEP 09 (2004) 042 [hep-ph/0407343] [INSPIRE].

    Article  ADS  Google Scholar 

  61. F. Chavez and C. Duhr, Three-mass triangle integrals and single-valued polylogarithms, JHEP 11 (2012) 114 [arXiv:1209.2722] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. A. Smirnov and M. Tentyukov, Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735 [arXiv:0807.4129] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  63. S. Borowka, J. Carter and G. Heinrich, Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0, Comput. Phys. Commun. 184 (2013) 396 [arXiv:1204.4152] [INSPIRE].

    Article  ADS  Google Scholar 

  64. S. Borowka and G. Heinrich, Massive non-planar two-loop four-point integrals with SecDec 2.1, arXiv:1303.1157 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Tancredi.

Additional information

ArXiv ePrint: 1306.6344

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(ZIP 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehrmann, T., Tancredi, L. & Weihs, E. Two-loop master integrals for \( q\overline{q}\to VV \): the planar topologies. J. High Energ. Phys. 2013, 70 (2013). https://doi.org/10.1007/JHEP08(2013)070

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)070

Keywords

Navigation