Skip to main content
Log in

Holographic photon production with magnetic field in anisotropic plasmas

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the thermal photon production from constant magnetic field in a strongly coupled and anisotropic plasma via the gauge/gravity duality. The dual geometry with pressure anisotropy is generated from the axion-dilaton gravity action introduced by Mateos and Trancancelli and the magnetic field is coupled to fundamental matters(quarks) through the D3/D7 embeddings. We find that the photon spectra with different quark mass are enhanced at large frequency when the photons are emitted parallel to the anisotropic direction with larger pressure or perpendicular to the magnetic field. However, in the opposite conditions for the emitted directions, the spectra approximately saturate isotropic results in the absence of magnetic field. On the other hand, a resonance emerges at moderate frequency for the photon spectrum with heavy quarks when the photons move perpendicular to the magnetic field. The resonance is more robust when the photons are polarized along the magnetic field. On the contrary, in the presence of pressure anisotropy, the resonance will be suppressed. There exist competing effects of magnetic field and pressure anisotropy on meson melting in the strongly coupled super Yang-Mills plasma, while we argue that the suppression led by anisotropy may not be applied to the quark gluon plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PHENIX collaboration, A. Adare et al., Enhanced production of direct photons in Au+Au collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV and implications for the initial temperature, Phys. Rev. Lett. 104 (2010) 132301 [arXiv:0804.4168] [INSPIRE].

    Article  ADS  Google Scholar 

  2. PHENIX collaboration, A. Adare et al., Detailed measurement of the e + e pair continuum in p + p and Au+Au collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV and implications for direct photon production, Phys. Rev. C 81 (2010) 034911 [arXiv:0912.0244] [INSPIRE].

    ADS  Google Scholar 

  3. C. Gale, Photon Production in Hot and Dense Strongly Interacting Matter, arXiv:0904.2184 [INSPIRE].

  4. PHENIX collaboration, A. Adare et al., Observation of direct-photon collective flow in \( \sqrt{{{s_{NN }}}}=200 \) GeV Au+Au collisions, Phys. Rev. Lett. 109 (2012) 122302 [arXiv:1105.4126] [INSPIRE].

    Article  ADS  Google Scholar 

  5. ALICE collaboration, Measurement of Direct-Photon Elliptic Flow in Pb-Pb Collisions at \( \sqrt{{{s_{NN }}}}=2.76 \) TeV, arXiv:1212.3995 [INSPIRE].

  6. J.I. Kapusta, P. Lichard and D. Seibert, High-energy photons from quark-gluon plasma versus hot hadronic gas, Phys. Rev. D 44 (1991) 2774 [Erratum ibid. D 47 (1993) 4171] [INSPIRE].

    ADS  Google Scholar 

  7. R. Baier, H. Nakkagawa, A. Niegawa and K. Redlich, Production rate of hard thermal photons and screening of quark mass singularity, Z. Phys. C 53 (1992) 433 [INSPIRE].

    ADS  Google Scholar 

  8. P. Aurenche, F. Gelis, R. Kobes and H. Zaraket, Bremsstrahlung and photon production in thermal QCD, Phys. Rev. D 58 (1998) 085003 [hep-ph/9804224] [INSPIRE].

    ADS  Google Scholar 

  9. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from quark gluon plasma: Complete leading order results, JHEP 12 (2001) 009 [hep-ph/0111107] [INSPIRE].

    Article  ADS  Google Scholar 

  10. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Ghiglier et al., Next-to-leading order thermal photon production in a weakly coupled quark-gluon plasma, JHEP 05 (2013) 010 [arXiv:1302.5970] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  13. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  14. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  17. S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton production in supersymmetric Yang-Mills plasma, JHEP 12 (2006) 015 [hep-th/0607237] [INSPIRE].

    Article  ADS  Google Scholar 

  18. D. Mateos and L. Patino, Bright branes for strongly coupled plasmas, JHEP 11 (2007) 025 [arXiv:0709.2168] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. A. Parnachev and D.A. Sahakyan, Photoemission with Chemical Potential from QCD Gravity Dual, Nucl. Phys. B 768 (2007) 177 [hep-th/0610247] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K. Jo and S.-J. Sin, Photo-emission rate of sQGP at finite density, Phys. Rev. D 83 (2011) 026004 [arXiv:1005.0200] [INSPIRE].

    ADS  Google Scholar 

  22. Y.Y. Bu, Photoproduction and conductivity in dense holographic QCD, Phys. Rev. D 86 (2012) 026003 [INSPIRE].

    ADS  Google Scholar 

  23. B. Hassanain and M. Schvellinger, Diagnostics of plasma photoemission at strong coupling, Phys. Rev. D 85 (2012) 086007 [arXiv:1110.0526] [INSPIRE].

    ADS  Google Scholar 

  24. R. Baier, S.A. Stricker, O. Taanila and A. Vuorinen, Holographic Dilepton Production in a Thermalizing Plasma, JHEP 07 (2012) 094 [arXiv:1205.2998] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R. Baier, S.A. Stricker, O. Taanila and A. Vuorinen, Production of Prompt Photons: Holographic Duality and Thermalization, Phys. Rev. D 86 (2012) 081901 [arXiv:1207.1116] [INSPIRE].

    ADS  Google Scholar 

  26. D. Steineder, S.A. Stricker and A. Vuorinen, Holographic Thermalization at Intermediate Coupling, Phys. Rev. Lett. 110 (2013) 101601 [arXiv:1209.0291] [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. Steineder, S.A. Stricker and A. Vuorinen, Probing the pattern of holographic thermalization with photons, JHEP 07 (2013) 014 [arXiv:1304.3404] [INSPIRE].

    Article  ADS  Google Scholar 

  28. H. van Hees, C. Gale and R. Rapp, Thermal Photons and Collective Flow at the Relativistic Heavy-Ion Collider, Phys. Rev. C 84 (2011) 054906 [arXiv:1108.2131] [INSPIRE].

    ADS  Google Scholar 

  29. B. Schenke and M. Strickland, Photon production from an anisotropic quark-gluon plasma, Phys. Rev. D 76 (2007) 025023 [hep-ph/0611332] [INSPIRE].

    ADS  Google Scholar 

  30. K. Tuchin, Photon decay in strong magnetic field in heavy-ion collisions, Phys. Rev. C 83 (2011) 017901 [arXiv:1008.1604] [INSPIRE].

    ADS  Google Scholar 

  31. K. Tuchin, Electromagnetic radiation by quark-gluon plasma in magnetic field, Phys. Rev. C 87 (2013) 024912 [arXiv:1206.0485] [INSPIRE].

    ADS  Google Scholar 

  32. G. Basar, D. Kharzeev, D. Kharzeev and V. Skokov, Conformal anomaly as a source of soft photons in heavy ion collisions, Phys. Rev. Lett. 109 (2012) 202303 [arXiv:1206.1334] [INSPIRE].

    Article  ADS  Google Scholar 

  33. K. Fukushima and K. Mameda, Wess-Zumino-Witten action and photons from the Chiral Magnetic Effect, Phys. Rev. D 86 (2012) 071501 [arXiv:1206.3128] [INSPIRE].

    ADS  Google Scholar 

  34. A. Bzdak and V. Skokov, Anisotropy of photon production: initial eccentricity or magnetic field, Phys. Rev. Lett. 110 (2013) 192301 [arXiv:1208.5502] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Rebhan and D. Steineder, Electromagnetic signatures of a strongly coupled anisotropic plasma, JHEP 08 (2011) 153 [arXiv:1106.3539] [INSPIRE].

    Article  ADS  Google Scholar 

  36. L. Patino and D. Trancanelli, Thermal photon production in a strongly coupled anisotropic plasma, JHEP 02 (2013) 154 [arXiv:1211.2199] [INSPIRE].

    Article  ADS  Google Scholar 

  37. D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its instabilities, Phys. Rev. Lett. 107 (2011) 101601 [arXiv:1105.3472] [INSPIRE].

    Article  ADS  Google Scholar 

  38. D. Mateos and D. Trancanelli, Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].

    Article  ADS  Google Scholar 

  39. Y. Bu, Electromagnetic signature in holographic plasma with B field, Phys. Rev. D 87 (2013) 026005 [INSPIRE].

    ADS  Google Scholar 

  40. H.-U. Yee, Flows and polarization of early photons with magnetic field at strong coupling, arXiv:1303.3571 [INSPIRE].

  41. A. Karch and L. Randall, Open and closed string interpretation of SUSY CFTs on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].

    ADS  Google Scholar 

  45. D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Holographic meson melting, JHEP 04 (2007) 031 [hep-th/0612169] [INSPIRE].

    Article  ADS  Google Scholar 

  47. D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. S.-Y. Wu, D.-L. Yang and Y. Yang, in progress.

  49. V.G. Filev, C.V. Johnson, R. Rashkov and K. Viswanathan, Flavoured large-N gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [INSPIRE].

    Article  ADS  Google Scholar 

  50. T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Finite temperature large-N gauge theory with quarks in an external magnetic field, JHEP 07 (2008) 080 [arXiv:0709.1547] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Quarks in an external electric field in finite temperature large-N gauge theory, JHEP 08 (2008) 092 [arXiv:0709.1554] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion collisions, Adv. High Energy Phys. 2013 (2013) 490495 [arXiv:1301.0099] [INSPIRE].

    MathSciNet  Google Scholar 

  53. K. Tuchin, Time and space dependence of electromagnetic field in relativistic heavy-ion collisions, arXiv:1305.5806 [INSPIRE].

  54. L. McLerran and V. Skokov, Comments About the Electromagnetic Field in Heavy-Ion Collisions, arXiv:1305.0774 [INSPIRE].

  55. J. Casalderrey-Solana and D. Mateos, Prediction of a Photon Peak in Relativistic Heavy Ion Collisions, Phys. Rev. Lett. 102 (2009) 192302 [arXiv:0806.4172] [INSPIRE].

    Article  ADS  Google Scholar 

  56. D. Giataganas, Probing strongly coupled anisotropic plasma, JHEP 07 (2012) 031 [arXiv:1202.4436] [INSPIRE].

    Article  ADS  Google Scholar 

  57. M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Quarkonium dissociation by anisotropy, JHEP 01 (2013) 170 [arXiv:1208.2672] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Chakraborty and N. Haque, Holographic quark-antiquark potential in hot, anisotropic Yang-Mills plasma, Nucl. Phys. B 874 (2013) 821 [arXiv:1212.2769] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. A. Dumitru, Y. Guo and M. Strickland, The heavy-quark potential in an anisotropic (viscous) plasma, Phys. Lett. B 662 (2008) 37 [arXiv:0711.4722] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. Dumitru, Y. Guo and M. Strickland, The Imaginary part of the static gluon propagator in an anisotropic (viscous) QCD plasma, Phys. Rev. D 79 (2009) 114003 [arXiv:0903.4703] [INSPIRE].

    ADS  Google Scholar 

  61. M. Strickland and D. Bazow, Thermal Bottomonium Suppression at RHIC and LHC, Nucl. Phys. A 879 (2012) 25 [arXiv:1112.2761] [INSPIRE].

    Article  ADS  Google Scholar 

  62. M. Strickland, Thermal Y 1s and χ b1 suppression in \( \sqrt{{{s_{NN }}}}=2.76 \) TeV Pb-Pb collisions at the LHC, Phys. Rev. Lett. 107 (2011) 132301 [arXiv:1106.2571] [INSPIRE].

    Article  ADS  Google Scholar 

  63. A. Mócsy, P. Petreczky and M. Strickland, Quarkonia in the Quark Gluon Plasma, Int. J. Mod. Phys. A 28 (2013) 1340012 [arXiv:1302.2180] [INSPIRE].

    Article  Google Scholar 

  64. A. Rebhan and D. Steineder, Violation of the Holographic Viscosity Bound in a Strongly Coupled Anisotropic Plasma, Phys. Rev. Lett. 108 (2012) 021601 [arXiv:1110.6825] [INSPIRE].

    Article  ADS  Google Scholar 

  65. B. Muller, S.-Y. Wu and D.-L. Yang, to appear.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Yu Wu.

Additional information

ArXiv ePrint: 1305.5509v3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SY., Yang, DL. Holographic photon production with magnetic field in anisotropic plasmas. J. High Energ. Phys. 2013, 32 (2013). https://doi.org/10.1007/JHEP08(2013)032

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)032

Keywords

Navigation