Skip to main content
Log in

Recent result of the AMS-02 experiment and decaying gravitino dark matter in gauge mediation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The AMS-02 collaboration has recently reported an excess of cosmic-ray positron fractions, which is consistent with previous results at the PAMELA experiment. The result indicates the existence of new physics phenomena to provide the origin of the energetic cosmic-ray positron. We pursue the possibility that the enhancement of the positron fraction is due to decays of gravitino dark matter. We discuss that such a scenario viably fits into the models in which the soft SUSY breaking parameters emerge dominantly from gauge-mediation mechanism with superparticle masses of around 10 TeV. Our scenario is compatible with the 126 GeV Higgs boson, negative results from searches for SUSY particles, and non-observation of anomalous flavor-changing processes. We also point out that the scenario will be tested in near future by measuring the electric dipole moment of the electron and the lepton flavor violating decay of the muon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AMS collaboration, M. Aguilar et al., First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV, Phys. Rev. Lett. 110 (2013), no. 14 141102 [INSPIRE].

  2. PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Ibarra and D. Tran, Gamma Ray Spectrum from Gravitino Dark Matter Decay, Phys. Rev. Lett. 100 (2008) 061301 [arXiv:0709.4593] [INSPIRE].

    Article  ADS  Google Scholar 

  4. K. Ishiwata, S. Matsumoto and T. Moroi, High Energy Cosmic Rays from the Decay of Gravitino Dark Matter, Phys. Rev. D 78 (2008) 063505 [arXiv:0805.1133] [INSPIRE].

    ADS  Google Scholar 

  5. K. Ishiwata, S. Matsumoto and T. Moroi, Cosmic-Ray Positron from Superparticle Dark Matter and the PAMELA Anomaly, Phys. Lett. B 675 (2009) 446 [arXiv:0811.0250] [INSPIRE].

    Article  ADS  Google Scholar 

  6. K. Ishiwata, S. Matsumoto and T. Moroi, High energy cosmic rays from decaying supersymmetric dark matter, JHEP 05 (2009) 110 [arXiv:0903.0242] [INSPIRE].

    Article  ADS  Google Scholar 

  7. W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino dark matter in R-parity breaking vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502.

    ADS  Google Scholar 

  9. K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].

    ADS  Google Scholar 

  10. M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].

    ADS  Google Scholar 

  11. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  12. W. Buchmüller, R. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    Article  ADS  Google Scholar 

  14. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  15. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  16. E.A. Baltz and J. Edsjo, Positron propagation and fluxes from neutralino annihilation in the halo, Phys. Rev. D 59 (1998) 023511 [astro-ph/9808243] [INSPIRE].

    ADS  Google Scholar 

  17. T. Delahaye, R. Lineros, F. Donato, N. Fornengo and P. Salati, Positrons from dark matter annihilation in the galactic halo: theoretical uncertainties, Phys. Rev. D 77 (2008) 063527 [arXiv:0712.2312] [INSPIRE].

    ADS  Google Scholar 

  18. J.F. Navarro, C.S. Frenk and S.D. White, The Structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J.F. Navarro, C.S. Frenk and S.D. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].

    Article  ADS  Google Scholar 

  20. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Ibe, S. Matsumoto, S. Shirai and T.T. Yanagida, AMS-02 Positrons from Decaying Wino in the Pure Gravity Mediation Model, JHEP 07 (2013) 063 [arXiv:1305.0084] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Strong and I. Moskalenko, Propagation of cosmic-ray nucleons in the galaxy, Astrophys. J. 509 (1998) 212 [astro-ph/9807150] [INSPIRE].

    Article  ADS  Google Scholar 

  23. L. Maccione, Low energy cosmic ray positron fraction explained by charge-sign dependent solar modulation, Phys. Rev. Lett. 110 (2013) 081101 [arXiv:1211.6905] [INSPIRE].

    Article  ADS  Google Scholar 

  24. L. Gleeson and W. Axford, Solar Modulation of Galactic Cosmic Rays, Astrophys. J. 154 (1968) 1011 [INSPIRE].

    Article  ADS  Google Scholar 

  25. PAMELA collaboration, O. Adriani et al., The cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV, Phys. Rev. Lett. 106 (2011) 201101 [arXiv:1103.2880] [INSPIRE].

    Article  ADS  Google Scholar 

  26. Fermi LAT collaboration, M. Ackermann et al., Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV, Phys. Rev. D 82 (2010) 092004 [arXiv:1008.3999] [INSPIRE].

    ADS  Google Scholar 

  27. Q. Yuan et al., Implications of the AMS-02 positron fraction in cosmic rays, arXiv:1304.1482 [INSPIRE].

  28. S. Matsumoto, K. Ishiwata and T. Moroi, Cosmic Gamma-ray from Inverse Compton Process in Unstable Dark Matter Scenario, Phys. Lett. B 679 (2009) 1 [arXiv:0905.4593] [INSPIRE].

    ADS  Google Scholar 

  29. M. Garny, A. Ibarra and D. Tran, Constraints on hadronically decaying dark matter, JCAP 08 (2012) 025 [arXiv:1205.6783] [INSPIRE].

    Article  ADS  Google Scholar 

  30. T. Delahaye and M. Grefe, Antiproton Limits on Decaying Gravitino Dark Matter, arXiv:1305.7183 [INSPIRE].

  31. C. Evoli, I. Cholis, D. Grasso, L. Maccione and P. Ullio, Antiprotons from dark matter annihilation in the Galaxy: astrophysical uncertainties, Phys. Rev. D 85 (2012) 123511 [arXiv:1108.0664] [INSPIRE].

    ADS  Google Scholar 

  32. M. Cirelli, E. Moulin, P. Panci, P.D. Serpico and A. Viana, Gamma ray constraints on Decaying Dark Matter, Phys. Rev. D 86 (2012) 083506 [arXiv:1205.5283] [INSPIRE].

    ADS  Google Scholar 

  33. I. Masina, P. Panci and F. Sannino, Gamma ray constraints on flavor violating asymmetric dark matter, JCAP 12 (2012) 002 [arXiv:1205.5918] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S. Shirai, F. Takahashi and T. Yanagida, R-violating Decay of Wino Dark Matter and electron/positron Excesses in the PAMELA/Fermi Experiments, Phys. Lett. B 680 (2009) 485 [arXiv:0905.0388] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    Article  ADS  Google Scholar 

  36. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].

    Article  ADS  Google Scholar 

  37. T. Moroi and M. Nagai, Probing Supersymmetric Model with Heavy Sfermions Using Leptonic Flavor and CP-violations, Phys. Lett. B 723 (2013) 107 [arXiv:1303.0668] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. D. McKeen, M. Pospelov and A. Ritz, EDM Signatures of PeV-scale Superpartners, arXiv:1303.1172 [INSPIRE].

  39. A. Baldini et al., MEG Upgrade Proposal, arXiv:1301.7225 [INSPIRE].

  40. J. Brod and M. Gorbahn, Next-to-Next-to-Leading-Order Charm-Quark Contribution to the CP-violation Parameter ϵ K and ΔM K , Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].

    Article  ADS  Google Scholar 

  41. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  42. A.C. Vutha et al., Search for the electric dipole moment of the electron with thorium monoxide, J. Phys. B 43 (2010) 074007 [arXiv:0908.2412] [INSPIRE].

    ADS  Google Scholar 

  43. A. Masiero and J. Valle, A model for spontaneous r parity breaking, Phys. Lett. B 251 (1990) 273 [INSPIRE].

    Article  ADS  Google Scholar 

  44. K. Kumekawa, T. Moroi and T. Yanagida, Flat potential for inflaton with a discrete R invariance in supergravity, Prog. Theor. Phys. 92 (1994) 437 [hep-ph/9405337] [INSPIRE].

    Article  ADS  Google Scholar 

  45. K. Hamaguchi, H. Murayama and T. Yanagida, Leptogenesis from N dominated early universe, Phys. Rev. D 65 (2002) 043512 [hep-ph/0109030] [INSPIRE].

    ADS  Google Scholar 

  46. WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, arXiv:1212.5226 [INSPIRE].

  47. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  48. T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336-337] [hep-ph/0012052] [INSPIRE].

  50. J. Pradler and F.D. Steffen, Constraints on the Reheating Temperature in Gravitino Dark Matter Scenarios, Phys. Lett. B 648 (2007) 224 [hep-ph/0612291] [INSPIRE].

    Article  ADS  Google Scholar 

  51. G. Veneziano and S. Yankielowicz, An Effective Lagrangian for the Pure N = 1 Supersymmetric Yang-Mills Theory, Phys. Lett. B 113 (1982) 231 [INSPIRE].

    Article  ADS  Google Scholar 

  52. T. Taylor, G. Veneziano and S. Yankielowicz, Supersymmetric QCD and Its Massless Limit: An Effective Lagrangian Analysis, Nucl. Phys. B 218 (1983) 493 [INSPIRE].

    Article  ADS  Google Scholar 

  53. T. Yanagida, in Proceedings of the Workshop on Unified Theory and Baryon Number of the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979).

  54. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  55. S.L. Glashow, in NATO Advanced Study Institute, Series B. Vol. 61: Quarks and Leptons, M. Lévy et al. eds., Plenum Press, New York U.S.A. (1979).

  56. R.N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912.

    Article  ADS  Google Scholar 

  57. P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sho Iwamoto.

Additional information

ArXiv ePrint: 1304.1483

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibe, M., Iwamoto, S., Matsumoto, S. et al. Recent result of the AMS-02 experiment and decaying gravitino dark matter in gauge mediation. J. High Energ. Phys. 2013, 29 (2013). https://doi.org/10.1007/JHEP08(2013)029

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)029

Keywords

Navigation