Skip to main content
Log in

S-duality as a β-deformed Fourier transform

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

An attempt is made to formulate Gaiotto’s S-duality relations in an explicit quantitative form. Formally the problem is that of evaluation of the Racah coefficients for the Virasoro algebra, and we approach it with the help of the matrix model representation of the AGT-related conformal blocks and Nekrasov functions. In the Seiberg-Witten limit, this S-duality reduces to the Legendre transformation. In the simplest case, its lifting to the level of Nekrasov functions is just the Fourier transform, while corrections are related to the beta-deformation. We calculate them with the help of the matrix model approach and observe that they vanish for β = 1. Explicit evaluation of the same corrections from the U q (sl(2)) infinite-dimensional representation formulas due to B.Ponsot and J.Teshner remains an open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Belavin, A.M. Polyakov and A. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Zamolodchikov and Al. Zamolodchikov, Conformal field theory and critical phenomena in 2d systems (in Russian), MCCME, Moscow (2009).

    Google Scholar 

  3. N. Vilenkin and A. Klymik, Representation of Lie groups and Special Functions. Volume 3, Mathematics and its applications, Kluwer academic publisher (1993).

  4. P. Golod and A. Klimyk, Mathematical Foundations of Symmetry Theory (in Ukrainian), Naukova Dumka Publishers, Kyiv, (1992).

    Google Scholar 

  5. B. Ponsot and J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, hep-th/9911110 [INSPIRE].

  6. B. Ponsot and J. Teschner, Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of \( U(q)\left( {{\text{SL}}\left( {{2},\mathbb{R}} \right)} \right) \), Commun. Math. Phys. 224 (2001) 613 [math/0007097] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Teschner, A Lecture on the Liouville vertex operators, Int. J. Mod. Phys. A 19S2 (2004) 436 [hep-th/0303150] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  8. J. Teschner, From Liouville theory to the quantum geometry of Riemann surfaces, hep-th/0308031 [INSPIRE].

  9. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. N. Wyllard, A(N − 1) conformal Toda field theory correlation functions from conformal N =2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Mironov and A. Morozov, The Power of Nekrasov Functions, Phys. Lett. B 680 (2009) 188 [arXiv:0908.2190] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010)1 [arXiv:0908.2569] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. C. Montonen and D.I. Olive, Magnetic Monopoles as Gauge Particles?, Phys. Lett. B 72 (1977) 117 [INSPIRE].

    Article  ADS  Google Scholar 

  14. P. Goddard, J. Nuyts and D.I. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys. B 125 (1977) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. E. Witten and D.I. Olive, Supersymmetry Algebras That Include Topological Charges, Phys. Lett. B 78 (1978) 97 [INSPIRE].

    Article  ADS  Google Scholar 

  16. H. Osborn, Topological Charges for N = 4 Supersymmetric Gauge Theories and Monopoles of Spin 1, Phys. Lett. B 83 (1979) 321 [INSPIRE].

    Article  ADS  Google Scholar 

  17. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

  18. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Hanany and Y. Oz, On the quantum moduli space of vacua of N = 2 supersymmetric SU(N(c)) gauge theories, Nucl. Phys. B 452 (1995) 283 [hep-th/9505075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. P.C. Argyres, M.R. Plesser and A.D. Shapere, The Coulomb phase of N = 2 supersymmetric QCD, Phys. Rev. Lett. 75 (1995) 1699 [hep-th/9505100] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. J.A. Minahan and D. Nemeschansky, Hyperelliptic curves for supersymmetric Yang-Mills, Nucl. Phys. B 464 (1996) 3 [hep-th/9507032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. J.A. Minahan and D. Nemeschansky, N = 2 super Yang-Mills and subgroups of \( {\text{SL}}\left( {{2},\mathbb{Z}} \right) \), Nucl. Phys. B 468 (1996) 72 [hep-th/9601059] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. O. Aharony and S. Yankielowicz, Exact electric-magnetic duality in N = 2 supersymmetric QCD theories, Nucl. Phys. B 473 (1996) 93 [hep-th/9601011] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. P.C. Argyres, S duality and global symmetries in N = 2 supersymmetric field theory, Adv. Theor. Math. Phys. 2 (1998) 293 [hep-th/9706095] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  25. P.C. Argyres, Dualities in supersymmetric field theories, Nucl. Phys. Proc. Suppl. 61A (1998) 149 [hep-th/9705076] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. J.A. Minahan, Duality symmetries for N = 2 supersymmetric QCD with vanishing β-functions, Nucl. Phys. B 537 (1999) 243 [hep-th/9806246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. P.C. Argyres and A. Buchel, New S dualities in N = 2 supersymmetric SU(2) × SU(2) gauge theory, JHEP 11 (1999) 014 [hep-th/9910125] [INSPIRE].

    Article  ADS  Google Scholar 

  28. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  29. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].

  30. N. Nekrasov and E. Witten, The Omega Deformation, Branes, Integrability and Liouville Theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. R. Dijkgraaf and C. Vafa, Toda Theories, Matrix Models, Topological Strings and N = 2 Gauge Systems, arXiv:0909.2453 [INSPIRE].

  32. H. Itoyama, K. Maruyoshi and T. Oota, The Quiver Matrix Model and 2d-4d Conformal Connection, Prog. Theor. Phys. 123 (2010) 957 [arXiv:0911.4244] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. T. Eguchi and K. Maruyoshi, Penner Type Matrix Model and Seiberg-Witten Theory, JHEP 02 (2010) 022 [arXiv:0911.4797] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. T. Eguchi and K. Maruyoshi, Seiberg-Witten theory, matrix model and AGT relation, JHEP 07 (2010) 081 [arXiv:1006.0828] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. R. Schiappa and N. Wyllard, An A r threesome: Matrix models, 2d CFTs and 4d N = 2 gauge theories, J. Math. Phys. 51 (2010) 082304 [arXiv:0911.5337] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Mironov, A. Morozov and S. Shakirov, Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions, JHEP 02 (2010) 030 [arXiv:0911.5721] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. A. Mironov, A. Morozov and S. Shakirov, Conformal blocks as Dotsenko-Fateev Integral Discriminants, Int. J. Mod. Phys. A 25 (2010) 3173 [arXiv:1001.0563] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Mironov, A. Morozov and S. Shakirov, Brezin-Gross-Witten model aspure gaugelimit of Selberg integrals, JHEP 03 (2011) 102 [arXiv:1011.3481] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Mironov, A. Morozov and A. Morozov, Conformal blocks and generalized Selberg integrals, Nucl. Phys. B 843 (2011) 534 [arXiv:1003.5752] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Alexandrov, A. Mironov and A. Morozov, Partition functions of matrix models as the first special functions of string theory. 1. Finite size Hermitean one matrix model, Int. J Mod. Phys. A 19 (2004) 4127 [hep-th/0310113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Alexandrov, A. Mironov and A. Morozov, M-theory of matrix models, Teor. Mat. Fiz. 150 (2007) 179 [hep-th/0605171] [INSPIRE].

    Article  Google Scholar 

  42. A. Alexandrov, A. Mironov and A. Morozov, Instantons and merons in matrix models, Physica D 235 (2007) 126 [hep-th/0608228] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. A. Alexandrov, A. Mironov and A. Morozov, BGWM as Second Constituent of Complex Matrix Model, JHEP 12 (2009) 053 [arXiv:0906.3305] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. A. Alexandrov, A. Mironov, A. Morozov and P. Putrov, Partition Functions of Matrix Models as the First Special Functions of String Theory. II. Kontsevich Model, Int. J. Mod. Phys. A 24 (2009) 4939 [arXiv:0811.2825] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. B. Eynard, Topological expansion for the 1-Hermitian matrix model correlation functions, JHEP 11 (2004) 031 [hep-th/0407261] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. L. Chekhov and B. Eynard, Hermitean matrix model free energy: Feynman graph technique for all genera, JHEP 03 (2006) 014 [hep-th/0504116] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. L. Chekhov and B. Eynard, Matrix eigenvalue model: Feynman graph technique for all genera, JHEP 12 (2006) 026 [math-ph/0604014] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, math-ph/0702045 [INSPIRE].

  49. N. Orantin, Symplectic invariants, Virasoro constraints and Givental decomposition, arXiv:0808.0635 [INSPIRE].

  50. R. Kaul and T. Govindarajan, Three-dimensional Chern-Simons theory as a theory of knots and links, Nucl. Phys. B 380 (1992) 293 [hep-th/9111063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. P. Rama Devi, T. Govindarajan and R. Kaul, Three-dimensional Chern-Simons theory as a theory of knots and links. 3. Compact semisimple group, Nucl. Phys. B 402 (1993) 548 [hep-th/9212110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. P. Ramadevi, T. Govindarajan and R. Kaul, Knot invariants from rational conformal field theories, Nucl. Phys. B 422 (1994) 291 [hep-th/9312215] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. Zodinmawia and P. Ramadevi, SU(N) quantum Racah coefficients & non-torus links, arXiv:1107.3918 [INSPIRE].

  54. A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. I. Integrability and difference equations, arXiv:1112.5754 [INSPIRE].

  55. A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. II. Fundamental representation. Up to five strands in braid, JHEP 03 (2012) 034 [arXiv:1112.2654] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. H. Itoyama, A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. III. All 3-Strand braids in the first symmetric representation, International Journal of Modern Physics A 27 (2012) 1250099 [arXiv:1204.4785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].

  58. T. Dimofte, S. Gukov and Y. Soibelman, Quantum Wall Crossing in N = 2 Gauge Theories, Lett. Math. Phys. 95 (2011) 1 [arXiv:0912.1346] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. T. Dimofte, S. Gukov and L. Hollands, Vortex Counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Y. Terashima and M. Yamazaki, \( {\text{SL}}\left( {{2},\mathbb{R}} \right) \) Chern-Simons, Liouville and Gauge Theory on Duality Walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].

    Article  ADS  Google Scholar 

  61. D. Galakhov, A. Mironov, A. Morozov and A. Smirnov, On 3d extensions of AGT relation, Theor. Math. Phys. 172 (2012) 939 [Teor. Mat. Fiz. 172 (2012) 73] [arXiv:1104.2589] [INSPIRE].

  62. G.W. Moore and N. Seiberg, Classical and Quantum Conformal Field Theory, Commun. Math. Phys. 123 (1989) 177 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. U. Tokyo 1A 24 (1977) 167.

    MathSciNet  MATH  Google Scholar 

  64. N. Kurokawa, Multiple sine functions and Selberg zeta functions, P. Jpn. Acad. A 67 (1991) 61.

    Article  MathSciNet  Google Scholar 

  65. N. Kurokawa, Gamma factors and Plancherel measures, P. Jpn. Acad. A 68 (1992) 256.

    Article  MathSciNet  Google Scholar 

  66. N. Kurokawa, Multiple zeta functions; an example, Adv. Stu. P. M. 21 (1992) 219.

    MathSciNet  Google Scholar 

  67. L. Faddeev and R. Kashaev, Quantum Dilogarithm, Mod. Phys. Lett. A 9 (1994) 427 [hep-th/9310070] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. L. Faddeev, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995) 249 [hep-th/9504111] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. L. Faddeev, Modular double of quantum group, Math. Phys. Stud. 21 (2000) 149 [math/9912078] [INSPIRE].

    MathSciNet  Google Scholar 

  70. S. Sergeev, V. Bazhanov, H. Boos, V. Mangazeev and Yu. Stroganov, Quantum dilogarithm and tetrahedron equation, IHEP-95-129 (1995) [q-alg/9511015].

  71. M. Jimbo and T. Miwa, Quantum KZ equation with |q| = 1 and correlation functions of the XXZ model in the gapless regime, J. Phys. A 29 (1996) 2923 [hep-th/9601135] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  72. S.N.M. Ruijsenaars First order analytic difference equations and integrable quantum systems J. Math. Phys. 38 (1997) 1069.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. R. Kashaev, Quantization of Teichmueller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998) 105 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  74. E.W. Barnes, The genesis of the double gamma function, P. Lond. Math. Soc. 31 (1899) 358.

    Article  MATH  Google Scholar 

  75. E.W. Barnes, The theory of the double gamma function, Philos. T. Roy. Soc. A 196 (1901) 265.

    Article  ADS  Google Scholar 

  76. E.W. Barnes, On the theory of multiple gamma functions, Trans. Cambr. Phil. Soc. 19 (1904) 374.

    Google Scholar 

  77. A. Losev, N. Nekrasov and S.L. Shatashvili, Issues in topological gauge theory, Nucl. Phys. B 534 (1998) 549 [hep-th/9711108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-Witten solution, hep-th/9801061 [INSPIRE].

  79. G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. G.W. Moore, N. Nekrasov and S. Shatashvili, D particle bound states and generalized instantons, Commun. Math. Phys. 209 (2000) 77 [hep-th/9803265] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. A. Marshakov, A. Mironov and A. Morozov, Combinatorial Expansions of Conformal Blocks, Theor. Math. Phys. 164 (2010) 831 [arXiv:0907.3946] [INSPIRE].

    Article  MATH  Google Scholar 

  82. A. Mironov, S. Mironov, A. Morozov and A. Morozov, CFT exercises for the needs of AGT, arXiv:0908.2064 [INSPIRE].

  83. A. Mironov, A. Morozov and S. Shakirov, Towards a proof of AGT conjecture by methods of matrix models, Int. J. Mod. Phys. A 27 (2012) 1230001 [arXiv:1011.5629] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. D. Gaiotto, N = 2 dualities, arXiv:0904.2715 [INSPIRE].

  85. M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and integrable hierarchies, Commun. Math. Phys. 261 (2006) 451 [hep-th/0312085] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  86. R. Dijkgraaf, L. Hollands, P. Sulkowski and C. Vafa, Supersymmetric gauge theories, intersecting branes and free fermions, JHEP 02 (2008) 106 [arXiv:0709.4446] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  87. Al. Zamolodchikov, Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin-Teller model, JETP 63 (1986) 1061.

    MathSciNet  Google Scholar 

  88. Al. Zamolodchikov, Conformal symmetry in two-dimensional space: Recursion representation of conformal block, Theor.Math.Phys. 73 (1987) 1088.

    Article  MathSciNet  Google Scholar 

  89. A. Marshakov, A. Mironov and A. Morozov, Zamolodchikov asymptotic formula and instanton expansion in N = 2 SUSY N f = 2N c QCD, JHEP 11 (2009) 048 [arXiv:0909.3338] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  90. R. Poghossian, Recursion relations in CFT and N = 2 SYM theory, JHEP 12 (2009) 038 [arXiv:0909.3412] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  91. S. Kharchev, D. Lebedev and M. Semenov-Tian-Shansky, Unitary representations of U q (sl(2, R)), the modular double and the multiparticle q deformed Toda chains, Commun. Math. Phys. 225 (2002) 573 [hep-th/0102180] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  92. F. David, Loop equations and nonperturbative effects in two-dimensional quantum gravity, Mod. Phys. Lett. A 5 (1990) 1019 [INSPIRE].

    Article  ADS  Google Scholar 

  93. A. Mironov and A. Morozov, On the origin of Virasoro constraints in matrix models: Lagrangian approach, Phys. Lett. B 252 (1990) 47 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  94. J. Ambjørn and Y. Makeenko, Properties of loop equations for the hermitean matrix model and for two-dimensional quantum gravity, Mod. Phys. Lett. A 5 (1990) 1753 [INSPIRE].

    Article  ADS  Google Scholar 

  95. H. Itoyama and Y. Matsuo, Noncritical Virasoro algebra of d < 1 matrix model and quantized string field, Phys. Lett. B 255 (1991) 202 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  96. N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, arXiv:0908.4052 [INSPIRE].

  97. N. Nekrasov, A. Rosly and S. Shatashvili, Darboux coordinates, Yang-Yang functional and gauge theory, Nucl. Phys. Proc. Suppl. 216 (2011) 69 [arXiv:1103.3919] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  98. K. Maruyoshi and F. Yagi, Seiberg-Witten curve via generalized matrix model, JHEP 01 (2011) 042 [arXiv:1009.5553] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  99. A. Mironov, A. Morozov and S. Shakirov, OnDotsenko-Fateevrepresentation of the toric conformal blocks, J. Phys. A 44 (2011) 085401 [arXiv:1010.1734] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  100. A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  101. R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  102. A. Mironov and A. Morozov, Nekrasov Functions and Exact Bohr-Zommerfeld Integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  103. A. Mironov and A. Morozov, Nekrasov Functions from Exact BS Periods: The Case of SU(N), J. Phys. A 43 (2010) 195401 [arXiv:0911.2396] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  104. A. Popolitov, On relation between Nekrasov functions and BS periods in pure SU(N) case, arXiv:1001.1407 [INSPIRE].

  105. W. He and Y.-G. Miao, Magnetic expansion of Nekrasov theory: the SU(2) pure gauge theory, Phys. Rev. D 82 (2010) 025020 [arXiv:1006.1214] [INSPIRE].

    ADS  Google Scholar 

  106. F. Fucito, J. Morales, D.R. Pacifici and R. Poghossian, Gauge theories on Ω-backgrounds from non commutative Seiberg-Witten curves, JHEP 05 (2011) 098 [arXiv:1103.4495] [INSPIRE].

    Article  ADS  Google Scholar 

  107. Y. Zenkevich, Nekrasov prepotential with fundamental matter from the quantum spin chain, Phys. Lett. B 701 (2011) 630 [arXiv:1103.4843] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  108. N. Dorey, S. Lee and T.J. Hollowood, Quantization of Integrable Systems and a 2d/4d Duality, JHEP 10 (2011) 077 [arXiv:1103.5726] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  109. M. Aganagic, M.C. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum Geometry of Refined Topological Strings, arXiv:1105.0630 [INSPIRE].

  110. A. Braverman, Instanton counting via affine Lie algebras. 1. Equivariant J functions of (affine) flag manifolds and Whittaker vectors, math/0401409 [INSPIRE].

  111. A. Braverman and P. Etingof, Instanton counting via affine Lie algebras II: From Whittaker vectors to the Seiberg-Witten prepotential, math/0409441 [INSPIRE].

  112. L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  113. V. Fateev and A. Litvinov, On AGT conjecture, JHEP 02 (2010) 014 [arXiv:0912.0504] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  114. C. Kozcaz, S. Pasquetti and N. Wyllard, A & B model approaches to surface operators and Toda theories, JHEP 08 (2010) 042 [arXiv:1004.2025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  115. K. Maruyoshi and M. Taki, Deformed Prepotential, Quantum Integrable System and Liouville Field Theory, Nucl. Phys. B 841 (2010) 388 [arXiv:1006.4505] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  116. A. Marshakov, A. Mironov and A. Morozov, On AGT Relations with Surface Operator Insertion and Stationary Limit of Beta-Ensembles, J. Geom. Phys. 61 (2011) 1203 [arXiv:1011.4491] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  117. A. Mironov, A. Morozov and T. Tomaras, Some properties of the Alday-Maldacena minimum, Phys. Lett. B 659 (2008) 723 [arXiv:0711.0192] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mironov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galakhov, D., Mironov, A. & Morozov, A. S-duality as a β-deformed Fourier transform. J. High Energ. Phys. 2012, 67 (2012). https://doi.org/10.1007/JHEP08(2012)067

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)067

Keywords

Navigation