Skip to main content
Log in

On the importance of the 1-loop finite corrections to seesaw neutrino masses

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the standard seesaw mechanism, finite corrections to the neutrino mass matrix arise from 1-loop self-energy diagrams mediated by a heavy neutrino. We study in detail these corrections and demonstrate that they can be very significant, exceeding in several cases the tree-level result. We consider the normal and inverted hierarchy spectra for light neutrinos and compute the finite corrections to the different elements of the neutrino mass matrix. Special attention is paid to their dependence on the parameters of the seesaw model. Among the cases in which the corrections can be large, we identify the fine-tuned models considered previously in the literature, where a strong cancellation between the different parameters is required to achieve compatibility with the experimental data. As a particular example, we also analyze how these corrections modify the tribimaximal mixing pattern and find that the deviations may be sizable, in particular for θ 13. Finally, we emphasize that due to their large size, the finite corrections to neutrino masses have to be taken into account if one wants to properly scan the parameter space of seesaw models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  2. M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].

    Article  ADS  Google Scholar 

  3. P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  4. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in the proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba Japan, 13–14 February 1979.

  5. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  6. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, CERN Print-80-0576.

  7. J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].

    ADS  Google Scholar 

  8. J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].

    Article  ADS  Google Scholar 

  9. S. Davidson and A. Ibarra, Determining seesaw parameters from weak scale measurements?, JHEP 09 (2001) 013 [hep-ph/0104076] [SPIRES].

    Article  ADS  Google Scholar 

  10. W. Grimus and H. Neufeld, Radiative neutrino masses in an SU(2) × U(1) model, Nucl. Phys. B 325 (1989) 18 [SPIRES].

    Article  ADS  Google Scholar 

  11. A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [SPIRES].

    ADS  Google Scholar 

  12. B.A. Kniehl and A. Pilaftsis, Mixing renormalization in Majorana neutrino theories, Nucl. Phys. B 474 (1996) 286 [hep-ph/9601390] [SPIRES].

    Article  ADS  Google Scholar 

  13. W. Grimus and H. Neufeld, 3-neutrino mass spectrum from combining seesaw and radiative neutrino mass mechanisms, Phys. Lett. B 486 (2000) 385 [hep-ph/9911465] [SPIRES].

    ADS  Google Scholar 

  14. W. Grimus and L. Lavoura, Softly broken lepton numbers and maximal neutrino mixing, JHEP 07 (2001) 045 [hep-ph/0105212] [SPIRES].

    Article  ADS  Google Scholar 

  15. A. Pilaftsis, Gauge and scheme dependence of mixing matrix renormalization, Phys. Rev. D 65 (2002) 115013 [hep-ph/0203210] [SPIRES].

    ADS  Google Scholar 

  16. W. Grimus and L. Lavoura, Soft lepton-flavor violation in a multi-Higgs-doublet seesaw model, Phys. Rev. D 66 (2002) 014016 [hep-ph/0204070] [SPIRES].

    ADS  Google Scholar 

  17. W. Grimus and L. Lavoura, One-loop corrections to the seesaw mechanism in the multi-Higgs-doublet standard model, Phys. Lett. B 546 (2002) 86 [hep-ph/0207229] [SPIRES].

    ADS  Google Scholar 

  18. J.A. Casas, J.M. Moreno, N. Rius, R. Ruiz de Austri and B. Zaldivar, Fair scans of the seesaw. Consequences for predictions on LFV processes, JHEP 03 (2011) 034 [arXiv:1010.5751] [SPIRES].

    Article  ADS  Google Scholar 

  19. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].

    ADS  Google Scholar 

  20. P. Huber and W. Winter, Neutrino factories and the ‘magic’ baseline, Phys. Rev. D 68 (2003) 037301 [hep-ph/0301257] [SPIRES].

    ADS  Google Scholar 

  21. A. Ibarra, E. Molinaro and S.T. Petcov, TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and ββ-decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [SPIRES].

    Article  ADS  Google Scholar 

  22. G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Yaguna.

Additional information

ArXiv ePrint: 1106.3587

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aristizabal Sierra, D., Yaguna, C.E. On the importance of the 1-loop finite corrections to seesaw neutrino masses. J. High Energ. Phys. 2011, 13 (2011). https://doi.org/10.1007/JHEP08(2011)013

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)013

Keywords

Navigation