Skip to main content
Log in

Two-loop soft corrections and resummation of the thrust distribution in the dijet region

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The thrust distribution in electron-positron annihilation is a classical precision QCD observable. Using renormalization group (RG) evolution in Laplace space, we perform the resummation of logarithmically enhanced corrections in the dijet limit, T → 1 to next-to-next-to-leading logarithmic (NNLL) accuracy. We independently derive the two-loop soft function for the thrust distribution and extract an analytical expression for the NNLL resummation coefficient g 3. Our findings confirm earlier NNLL resummation results for the thrust distribution in soft-collinear effective theory. To combine the resummed expressions with the fixed-order results, we derive the log(R)-matching and R-matching of the NNLL approximation to the fixed-order NNLO distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ALEPH collaboration, D. Buskulic et al., Studies of QCD in e + e  → hadrons at E(cm) = 130 GeV and 136 GeV, Z. Phys. C 73 (1997) 409 [SPIRES].

    Google Scholar 

  2. ALEPH collaboration, A. Heister et al. Studies of QCD at e + e centre-of-mass energies between 91 GeV and 209 GeV, Eur. Phys. J. C 35 (2004) 457 [SPIRES].

    ADS  Google Scholar 

  3. OPAL collaboration, P.D. Acton et al., A Determination of α s (M(Z0)) at LEP using resummed QCD calculations, Z. Phys. C 59 (1993) 1 [SPIRES].

    ADS  Google Scholar 

  4. OPAL collaboration, G. Alexander et al., QCD studies with e + e annihilation data at 130 GeV and 136 GeV, Z. Phys. C 72 (1996) 191 [SPIRES].

    ADS  Google Scholar 

  5. OPAL collaboration, K. Ackerstaff et al., QCD studies with e + e annihilation data at 161 GeV, Z. Phys. C 75 (1997) 193 [SPIRES].

    Google Scholar 

  6. OPAL collaboration, G. Abbiendi et al., QCD studies with e + e annihilation data at 172 GeV to 189 GeV, Eur. Phys. J. C 16 (2000) 185 [hep-ex/0002012] [SPIRES].

    Article  ADS  Google Scholar 

  7. OPAL collaboration, G. Abbiendi et al., Measurement of event shape distributions and moments in e + e  → hadrons at 91 GeV – 209 GeV and a determination of α s , Eur. Phys. J. C 40 (2005) 287 [hep-ex/0503051] [SPIRES].

    ADS  Google Scholar 

  8. OPAL collaboration, G. Abbiendi et al., Measurement of α s with radiative hadronic events, Eur. Phys. J. C 53 (2008) 21 [SPIRES].

    ADS  Google Scholar 

  9. L3 collaboration, M. Acciarri et al., Study of the structure of hadronic events and determination of α s at \( \sqrt {s} = 130 \) GeV and 136 GeV, Phys. Lett. B 371 (1996) 137 [SPIRES].

    ADS  Google Scholar 

  10. L3 collaboration, M. Acciarri et al., QCD studies and determination of α s in e + e collisions at \( \sqrt {s} = 161 \) GeV and 172 GeV, Phys. Lett. B 404 (1997) 390 [SPIRES].

    ADS  Google Scholar 

  11. L3 collaboration, M. Acciarri et al., QCD results from studies of hadronic events produced in e + e annihilations at \( \sqrt {s} = 183 \) GeV, Phys. Lett. B 444 (1998) 569 [SPIRES].

    ADS  Google Scholar 

  12. L3 collaboration, P. Achard et al., Determination of α s from hadronic event shapes in e + e annihilation at 192 GeV ≤ \( \sqrt {s} \) ≤ 208 GeV, Phys. Lett. B 536 (2002) 217 [hep-ex/0206052] [SPIRES].

    ADS  Google Scholar 

  13. L3 collaboration, P. Achard et al., Studies of hadronic event structure in e + e annihilation from 30 GeV to 209 GeV with the L3 detector, Phys. Rept. 399 (2004) 71 [hep-ex/0406049] [SPIRES].

    Article  ADS  Google Scholar 

  14. DELPHI collaboration, P. Abreu et al., Energy dependence of event shapes and of α s at LEP-2, Phys. Lett. B 456 (1999) 322 [SPIRES].

    ADS  Google Scholar 

  15. DELPHI collaboration, J. Abdallah et al., A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP, Eur. Phys. J. C 29 (2003) 285 [hep-ex/0307048] [SPIRES].

    ADS  Google Scholar 

  16. DELPHI collaboration, J. Abdallah et al., The measurement of α s from event shapes with the DELPHI detector at the highest LEP energies, Eur. Phys. J. C 37 (2004) 1 [hep-ex/0406011] [SPIRES].

    ADS  Google Scholar 

  17. SLD collaboration, K. Abe et al., Measurement of α s (M Z 2) from hadronic event observables at the Z 0 resonance, Phys. Rev. D 51 (1995) 962 [hep-ex/9501003] [SPIRES].

    ADS  Google Scholar 

  18. JADE collaboration, P. Pfeifen Schneider et al., QCD analyses and determinations of α s in e + e annihilation at energies between 35-GeV and 189-GeV, Eur. Phys. J. C 17 (2000) 19 [hep-ex/0001055] [SPIRES].

    Article  Google Scholar 

  19. S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, The Principal axis of jets. An Attempt to analyze high-energy collisions as two-body processes, Phys. Lett. 12 (1964) 57 [SPIRES].

    ADS  Google Scholar 

  20. E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587 [SPIRES].

    Article  ADS  Google Scholar 

  21. R.K. Ellis, D.A. Ross and A.E. Terrano, The Perturbative Calculation of Jet Structure in e + e Annihilation, Nucl. Phys. B 178 (1981) 421 [SPIRES].

    Article  ADS  Google Scholar 

  22. R.K. Ellis, D.A. Ross and A.E. Terrano, Calculation of Event Shape Parameters in e + e Annihilation, Phys. Rev. Lett. 45 (1980) 1226 [SPIRES].

    Article  ADS  Google Scholar 

  23. Z. Kunszt, Comment on the O(α S 2) Corrections to Jet Production in e + e Annihilation, Phys. Lett. B 99 (1981) 429 [SPIRES].

    ADS  Google Scholar 

  24. J.A.M. Vermaseren, K.J.F. Gaemers and S.J. Oldham, Perturbative QCD Calculation of Jet Cross-Sections in e + e Annihilation, Nucl. Phys. B 187 (1981) 301 [SPIRES].

    Article  ADS  Google Scholar 

  25. K. Fabricius, I. Schmitt, G. Kramer and G. Schierholz, Higher Order Perturbative QCD Calculation of Jet Cross-Sections in e + e Annihilation, Zeit. Phys. C 11 (1981) 315 [SPIRES].

    ADS  Google Scholar 

  26. Z. Kunszt, P. Nason, G. Marchesini and B.R Webber, QCD at LEP, in Workshop on Z Physics at LEP1: General Meetings. Vol. 1: Standard Physics, CERN Yellow Report ETH-PT-89-39, p.373 [SPIRES].

  27. W.T. Giele and E.W.N. Glover, Higher order corrections to jet cross-sections in e + e annihilation, Phys. Rev. D 46 (1992) 1980 [SPIRES].

    ADS  Google Scholar 

  28. S. Catani and M.H. Seymour, The Dipole Formalism for the Calculation of QCD Jet Cross Sections at Next-to-Leading Order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [SPIRES].

    ADS  Google Scholar 

  29. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].

    Article  ADS  Google Scholar 

  30. S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [SPIRES].

    Article  ADS  Google Scholar 

  31. Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [SPIRES].

    Article  ADS  Google Scholar 

  32. A. Banfi, G.P. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP 01 (2002) 018 [hep-ph/0112156] [SPIRES].

    Article  ADS  Google Scholar 

  33. R.W.L. Jones, M. Ford, G.P. Salam, H. Stenzel and D. Wicke, Theoretical uncertainties on α s from event-shape variables in e + e annihilations, JHEP 12 (2003) 007 [hep-ph/0312016] [SPIRES].

    Article  ADS  Google Scholar 

  34. A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna Subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [SPIRES].

    Article  ADS  Google Scholar 

  35. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Infrared structure of e + e  → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [SPIRES].

    Article  ADS  Google Scholar 

  36. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [SPIRES].

    Article  ADS  Google Scholar 

  37. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [SPIRES].

    Article  ADS  Google Scholar 

  38. S. Weinzierl, The infrared structure of e + e  → 3 jets at NNLO reloaded, JHEP 07 (2009) 009 [arXiv:0904.1145] [SPIRES].

    Article  ADS  Google Scholar 

  39. S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009) 041 [arXiv:0904.1077] [SPIRES].

    Article  ADS  Google Scholar 

  40. S. Weinzierl, Jet algorithms in electron-positron annihilation: Perturbative higher order predictions, Eur. Phys. J. C 71 (2011) 1565 [arXiv:1011.6247] [SPIRES].

    ADS  Google Scholar 

  41. A. Denner, S. Dittmaier, T. Gehrmann and C. Kurz, Electroweak corrections to three-jet production in electron-positron annihilation, Phys. Lett. B 679 (2009) 219 [arXiv:0906.0372] [SPIRES].

    ADS  Google Scholar 

  42. A. Denner, S. Dittmaier, T. Gehrmann and C. Kurz, Electroweak corrections to hadronic event shapes and jet production in e + e annihilation, Nucl. Phys. B 836 (2010) 37 [arXiv:1003.0986] [SPIRES].

    Article  ADS  Google Scholar 

  43. G. Dissertori et al., First determination of the strong coupling constant using NNLO predictions for hadronic event shapes in e + e annihilations, JHEP 02 (2008) 040 [arXiv:0712.0327] [SPIRES].

    Article  ADS  Google Scholar 

  44. G. Dissertori et al., Precise determination of the strong coupling constant at NNLO in QCD from the three-jet rate in electron–positron annihilation at LEP, Phys. Rev. Lett. 104 (2010) 072002 [arXiv:0910.4283] [SPIRES].

    Article  ADS  Google Scholar 

  45. T. Gehrmann, M. Jaquier and G. Luisoni, Hadronization effects in event shape moments, Eur. Phys. J. C 67 (2010) 57 [arXiv:0911.2422] [SPIRES].

    Article  ADS  Google Scholar 

  46. T. Gehrmann, G. Luisoni and H. Stenzel, Matching NLLA + NNLO for event shape distributions, Phys. Lett. B 664 (2008) 265 [arXiv:0803.0695] [SPIRES].

    ADS  Google Scholar 

  47. R.A. Davison and B.R. Webber, Non-Perturbative Contribution to the Thrust Distribution in e + e Annihilation, Eur. Phys. J. C 59 (2009) 13 [arXiv:0809.3326] [SPIRES].

    Article  ADS  Google Scholar 

  48. JADE collaboration, S. Bethke, S. Kluth, C. Pahl and J. Schieck, Determination of the Strong Coupling α s from hadronic Event Shapes with O(α s 3) and resummed QCD predictions using JADE Data, Eur. Phys. J. C 64 (2009) 351 [arXiv:0810.1389] [SPIRES].

    Article  ADS  Google Scholar 

  49. G. Dissertori et al., Determination of the strong coupling constant using matched NNLO + NLLA predictions for hadronic event shapes in e + e annihilations, JHEP 08 (2009) 036 [arXiv:0906.3436] [SPIRES].

    Article  ADS  Google Scholar 

  50. OPAL collaboration and others, Determination of α S using OPAL hadronic event shapes at \( \sqrt {s} \) = 91–209 GeV and resummed NNLO calculations, arXiv:1101.1470 [SPIRES].

  51. G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections, Nucl. Phys. B 281 (1987) 310 [SPIRES].

    Article  ADS  Google Scholar 

  52. D. de Florian and M. Grazzini, The back-to-back region in e + e energy energy correlation, Nucl. Phys. B 704 (2005) 387 [hep-ph/0407241] [SPIRES].

    Article  ADS  Google Scholar 

  53. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft-Collinear Factorization in Effective Field Theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [SPIRES].

    ADS  Google Scholar 

  54. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [SPIRES].

    ADS  Google Scholar 

  55. M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft-collinear effective theory and heavy-to-light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [SPIRES].

    Article  ADS  Google Scholar 

  56. M.D. Schwartz, Resummation and NLO Matching of Event Shapes with Effective Field Theory, Phys. Rev. D 77 (2008) 014026 [arXiv:0709.2709] [SPIRES].

    ADS  Google Scholar 

  57. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: Top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [SPIRES].

    ADS  Google Scholar 

  58. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [SPIRES].

    ADS  Google Scholar 

  59. T. Becher and M.D. Schwartz, A Precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [SPIRES].

    Article  ADS  Google Scholar 

  60. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with Power Corrections and a Precision Global Fit for alphas(mZ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [SPIRES].

    ADS  Google Scholar 

  61. Y.-T. Chien and M.D. Schwartz, Resummation of heavy jet mass and comparison to LEP data, JHEP 08 (2010) 058 [arXiv:1005.1644] [SPIRES].

    Article  ADS  Google Scholar 

  62. J.-y.Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, arXiv:1104.0881 [SPIRES].

  63. T. Becher, G. Bell and M. Neubert, Factorization and Resummation for Jet Broadening, arXiv:1104.4108 [SPIRES].

  64. S. Moch, J.A.M. Vermaseren and A. Vogt, The quark form factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [SPIRES].

    Article  ADS  Google Scholar 

  65. P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [SPIRES].

    Article  ADS  Google Scholar 

  66. R.N. Lee, A.V. Smirnov and V.A. Smirnov, Analytic Results for Massless Three-Loop Form Factors, JHEP 04 (2010) 020 [arXiv:1001.2887] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  67. T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [SPIRES].

    Article  ADS  Google Scholar 

  68. T. Becher and M. Neubert, Toward a NNLO calculation of the \( \bar{B} \to {X_s}\gamma \) decay rate with a cut on photon energy. II: Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251 [hep-ph/0603140] [SPIRES].

    ADS  Google Scholar 

  69. T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [SPIRES].

    Article  ADS  Google Scholar 

  70. A.H. Hoang and S. Kluth, Hemisphere Soft Function at O(α s 2) for Dijet Production in e + e Annihilation, arXiv:0806.3852 [SPIRES].

  71. R. Kelley, R.M. Schabinger, M.D. Schwartz and H.X. Zhu, The two-loop hemisphere soft function, arXiv:1105.3676 [SPIRES].

  72. A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh and S. Zuberi, Non-global Structure of the O(α s 2) Dijet Soft Function, arXiv:1105.4628 [SPIRES].

  73. Y. Li, S. Mantry and F. Petriello, An Exclusive Soft Function for Drell-Yan at Next-to-Next-to-Leading Order, arXiv:1105.5171 [SPIRES].

  74. P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Order α s 4 QCD Corrections to Z and τ Decays, Phys. Rev. Lett. 101 (2008) 012002 [arXiv:0801.1821] [SPIRES].

    Article  ADS  Google Scholar 

  75. J.C Collins, D.E. Soper and G. Sterman, in Perturbative Quantum Chromodynamics, A.H. Mueller eds., World Scientific, Singapore (1989).

    Google Scholar 

  76. C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [SPIRES].

    ADS  Google Scholar 

  77. C.F. Berger, T. Kucs and G.F. Sterman, Interjet energy flow/event shape correlations, Int. J. Mod. Phys. A 18 (2003) 4159 [hep-ph/0212343] [SPIRES].

    ADS  Google Scholar 

  78. G.P. Korchemsky and G.F. Sterman, Infrared factorization in inclusive B meson decays, Phys. Lett. B 340 (1994) 96 [hep-ph/9407344] [SPIRES].

    ADS  Google Scholar 

  79. J. Frenkel and J.C. Taylor, Non-abelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [SPIRES].

    Article  ADS  Google Scholar 

  80. J.G.M. Gatheral, Exponentiation of eikonal cross sections in nonabelian gauge theories, Phys. Lett. B 133 (1983) 90 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  81. S. Catani and M. Grazzini, The soft-gluon current at one-loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [SPIRES].

    Article  ADS  Google Scholar 

  82. T. Huber and D. Maître, HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  83. T. Huber and D. Maître, HypExp 2, Expanding Hypergeometric Functions about Half-Integer Parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  84. J. Carter and G. Heinrich, SecDec: A general program for sector decomposition, Comput. Phys. Commun. 182 (2011) 1566 [arXiv:1011.5493] [SPIRES].

    Article  ADS  Google Scholar 

  85. G. Heinrich, Sector Decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [arXiv:0803.4177] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  86. T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multi-loop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  87. S. Kawabata, A New version of the multidimensional integration and event generation package BASES/SPRING, Comp. Phys. Commun. 88 (1995) 309 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  88. G.P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput. Phys. 27 (1978) 192 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  89. T. Hahn, CUBA: A library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  90. S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523] [SPIRES].

    Article  Google Scholar 

  91. G.P. Korchemsky and G. Marchesini, Resummation of large infrared corrections using Wilson loops, Phys. Lett. B 313 (1993) 433 [SPIRES].

    ADS  Google Scholar 

  92. G.P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [SPIRES].

    Article  ADS  Google Scholar 

  93. I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [SPIRES].

    ADS  Google Scholar 

  94. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [SPIRES].

    Article  ADS  Google Scholar 

  95. G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov Evolution Kernels of Parton Distributions, Mod. Phys. Lett. A 4 (1989) 1257 [SPIRES].

    ADS  Google Scholar 

  96. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [SPIRES].

    Article  ADS  Google Scholar 

  97. A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: The singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  98. S. Moch, J.A.M. Vermaseren and A. Vogt, The three-loop splitting functions in QCD: The non-singlet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  99. S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The Resummation of Soft Gluon in Hadronic Collisions, Nucl. Phys. B 478 (1996) 273 [hep-ph/9604351] [SPIRES].

    Article  ADS  Google Scholar 

  100. T. Becher, private communication.

  101. Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Dispersive Approach to Power-Behaved Contributions in QCD Hard Processes, Nucl. Phys. B 469 (1996) 93 [hep-ph/9512336] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Francesco Monni.

Additional information

ArXiv ePrint: 1105.4560

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monni, P.F., Gehrmann, T. & Luisoni, G. Two-loop soft corrections and resummation of the thrust distribution in the dijet region. J. High Energ. Phys. 2011, 10 (2011). https://doi.org/10.1007/JHEP08(2011)010

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)010

Keywords

Navigation