Skip to main content
Log in

Vacuum varieties, holomorphic bundles and complex structure stabilization in heterotic theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss the use of gauge fields to stabilize complex structure moduli in Calabi-Yau three-fold compactifications of heterotic string and M-theory. The requirement that the gauge fields in such models preserve supersymmetry leads to a complicated landscape of vacua in complex structure moduli space. We develop methods to systematically map out this multi-branched vacuum space, in a computable and explicit manner. In analysing the resulting vacua, it is found that the associated Calabi-Yau three-folds are sometimes stabilized at a value of complex structure resulting in a singular compactification manifold. We describe how it is possible to resolve these singularities, in some cases, while maintaining computational control over the moduli stabilization mechanism. The discussion is illustrated throughout the paper with explicit worked examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic standard model, Phys. Lett. B 618 (2005)252 [hep-th/0501070] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A standard model from the E 8 × E 8 heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring Positive Monad Bundles And A New Heterotic Standard Model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two Hundred Heterotic Standard Models on Smooth Calabi-Yau Threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].

    ADS  Google Scholar 

  6. V. Braun, P. Candelas, R. Davies and R. Donagi, The MSSM spectrum from (0,2)-deformations of the heterotic standard embedding, JHEP 05 (2012) 127 [arXiv:1112.1097] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic line bundle standard models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Lukas, B.A. Ovrut, K. Stelle and D. Waldram, The Universe as a domain wall, Phys. Rev. D 59 (1999) 086001 [hep-th/9803235] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, Moduli dependent spectra of heterotic compactifications, Phys. Lett. B 598 (2004) 279 [hep-th/0403291] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The spectra of heterotic standard model vacua, JHEP 06 (2005) 070 [hep-th/0411156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. V. Braun, Y.-H. He and B.A. Ovrut, Yukawa couplings in heterotic standard models, JHEP 04 (2006) 019 [hep-th/0601204] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, Moduli dependent μ-terms in a heterotic standard model, JHEP 03 (2006) 006 [hep-th/0510142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. L.B. Anderson, Y.-H. He and A. Lukas, Heterotic compactification, an algorithmic approach, JHEP 07 (2007) 049 [hep-th/0702210] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. L.B. Anderson, Y.-H. He and A. Lukas, Monad bundles in heterotic string compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. L.B. Anderson, J. Gray and B. Ovrut, Yukawa textures from heterotic stability walls, JHEP 05 (2010) 086 [arXiv:1001.2317] [INSPIRE].

    Article  ADS  Google Scholar 

  17. V. Braun, Y.-H. He and B.A. Ovrut, Supersymmetric hidden sectors for heterotic standard models, arXiv:1301.6767 [INSPIRE].

  18. W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602 [hep-ph/0511035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string (II), Nucl. Phys. B 785 (2007) 149 [hep-th/0606187] [INSPIRE].

    Article  ADS  Google Scholar 

  20. O. Lebedev et al., A Mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].

    ADS  Google Scholar 

  21. J.E. Kim, J.-H. Kim and B. Kyae, Superstring standard model from Z(12-I) orbifold compactification with and without exotics and effective R-parity, JHEP 06 (2007) 034 [hep-ph/0702278] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. O. Lebedev et al., The Heterotic Road to the MSSM with R parity, Phys. Rev. D 77 (2008) 046013 [arXiv:0708.2691] [INSPIRE].

    ADS  Google Scholar 

  23. O. Lebedev, H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K. Vaudrevange, Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z(6) orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. S. Nibbelink Groot, J. Held, F. Ruehle, M. Trapletti and P.K. Vaudrevange, Heterotic Z(6-II) MSSM Orbifolds in Blowup, JHEP 03 (2009) 005 [arXiv:0901.3059] [INSPIRE].

    Article  Google Scholar 

  25. M. Blaszczyk et al., A Z2xZ2 standard model, Phys. Lett. B 683 (2010) 340 [arXiv:0911.4905] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. M. Blaszczyk, S. Nibbelink Groot, F. Ruehle, M. Trapletti and P.K. Vaudrevange, Heterotic MSSM on a Resolved Orbifold, JHEP 09 (2010) 065 [arXiv:1007.0203] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R. Kappl et al., String-Derived MSSM Vacua with Residual R Symmetries, Nucl. Phys. B 847 (2011) 325 [arXiv:1012.4574] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. H.P. Nilles, M. Ratz and P.K. Vaudrevange, Origin of family symmetries, arXiv:1204.2206 [INSPIRE].

  29. S. Groot Nibbelink and P.K. Vaudrevange, Schoen manifold with line bundles as resolved magnetized orbifolds, JHEP 03 (2013) 142 [arXiv:1212.4033] [INSPIRE].

    Article  ADS  Google Scholar 

  30. N.G.C. Bizet and H.P. Nilles, Heterotic Mini-landscape in blow-up, JHEP 06 (2013) 074 [arXiv:1302.1989] [INSPIRE].

    Article  ADS  Google Scholar 

  31. B. Assel, K. Christodoulides, A.E. Faraggi, C. Kounnas and J. Rizos, Exophobic Quasi-Realistic Heterotic String Vacua, Phys. Lett. B 683 (2010) 306 [arXiv:0910.3697] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. K. Christodoulides, A.E. Faraggi and J. Rizos, Top Quark Mass in Exophobic Pati-Salam Heterotic String Model, Phys. Lett. B 702 (2011) 81 [arXiv:1104.2264] [INSPIRE].

    ADS  Google Scholar 

  33. G. Cleaver et al., Investigation of Quasi-Realistic Heterotic String Models with Reduced Higgs Spectrum, Eur. Phys. J. C 71 (2011) 1842 [arXiv:1105.0447] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Maio and A. Schellekens, Permutation orbifolds of heterotic Gepner models, Nucl. Phys. B 848 (2011) 594 [arXiv:1102.5293] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. B. Gato-Rivera and A. Schellekens, Heterotic Weight Lifting, Nucl. Phys. B 828 (2010) 375 [arXiv:0910.1526] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. B. Gato-Rivera and A. Schellekens, Asymmetric Gepner Models II. Heterotic Weight Lifting, Nucl. Phys. B 846 (2011) 429 [arXiv:1009.1320] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. E. Witten, New Issues in Manifolds of SU(3) Holonomy, Nucl. Phys. B 268 (1986) 79 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. R. Donagi and M. Wijnholt, Higgs Bundles and UV Completion in F-theory, arXiv:0904.1218 [INSPIRE].

  39. L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing the complex structure in heterotic Calabi-Yau vacua, JHEP 02 (2011) 088 [arXiv:1010.0255] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah Class and Complex Structure Stabilization in Heterotic Calabi-Yau Compactifications, JHEP 10 (2011) 032 [arXiv:1107.5076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing all geometric moduli in heterotic Calabi-Yau vacua, Phys. Rev. D 83 (2011) 106011 [arXiv:1102.0011] [INSPIRE].

    ADS  Google Scholar 

  42. M.F. Atiyah, Complex Analytic Connections in Fibre Bundles, Trans. Amer. Math. Soc. 85 (1957) 181.

    Article  MathSciNet  MATH  Google Scholar 

  43. W. Decker and C. Lossen, Computing in Algebraic Geometry, Springer, Heidelberg Germany (2006).

    MATH  Google Scholar 

  44. P. Gianni, B Trager and G. Zacharias, Gröbner bases and Primary Decomposition of Polynomial Ideals, J. Symb. Comput. 6 (1988) 149.

    Article  MathSciNet  MATH  Google Scholar 

  45. G.M. Greuel, G. Pfister and H. Schönemann, Singular: A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern, Kaiserslautern Germany (2001). Available at http://www.singular.uni-kl.de/.

  46. J. Gray, Y.-H. He, A. Ilderton and A. Lukas, STRINGVACUA: A Mathematica Package for Studying Vacuum Configurations in String Phenomenology, Comput. Phys. Commun. 180 (2009) 107 [arXiv:0801.1508] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. J. Gray, Y.-H. He, A. Ilderton and A. Lukas, A New Method for Finding Vacua in String Phenomenology, JHEP 07 (2007) 023 [hep-th/0703249] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. J. Gray, Y.-H. He and A. Lukas, Algorithmic Algebraic Geometry and Flux Vacua, JHEP 09 (2006) 031 [hep-th/0606122] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [INSPIRE].

    MathSciNet  Google Scholar 

  50. P. Candelas, A. Dale, C. Lütken and R. Schimmrigk, Complete Intersection Calabi-Yau Manifolds, Nucl. Phys. B 298 (1988) 493 [INSPIRE].

    Article  ADS  Google Scholar 

  51. P. Candelas, P.S. Green and T. Hubsch, Rolling Among Calabi-Yau Vacua, Nucl. Phys. B 330 (1990) 49 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. P. Candelas, X. de la Ossa, Y.-H. He and B. Szendroi, Triadophilia: a special corner in the landscape, Adv. Theor. Math. Phys. 12 (2008) 429 [arXiv:0706.3134] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  53. P. Candelas and R. Davies, New Calabi-Yau Manifolds with Small Hodge Numbers, Fortsch. Phys. 58 (2010) 383 [arXiv:0809.4681] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. R. Davies, Quotients of the conifold in compact Calabi-Yau threefolds and new topological transitions, Adv. Theor. Math. Phys. 14 (2010) 965 [arXiv:0911.0708] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  55. R. Davies, Hyperconifold Transitions, Mirror Symmetry and String Theory, Nucl. Phys. B 850 (2011) 214 [arXiv:1102.1428] [INSPIRE].

    Article  ADS  Google Scholar 

  56. M.-T. Chuan, Existence of Hermitian-Yang-Mills metrics under conifold transitions, Commun. Anal. Geom. 20 (2012) 677 [arXiv:1012.3107] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  57. M. Reid, The moduli space of 3-folds with K = 0 may nevertheless be irreducible, Math. Ann. 278 (1987) 329.

    Article  MathSciNet  MATH  Google Scholar 

  58. T. Hubsch, Calabi-Yau ManifoldsA Bestiary for Physicists, World Scientific, Singapore (1994).

    Google Scholar 

  59. A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stability walls in heterotic theories, JHEP 09 (2009) 026 [arXiv:0905.1748] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The edge of supersymmetry: stability walls in heterotic theory, Phys. Lett. B 677 (2009) 190 [arXiv:0903.5088] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  62. C. Schoen, On fiber products of rational elliptic surfaces with section, Math. Z. 197 (1988) 177.

    Article  MathSciNet  MATH  Google Scholar 

  63. L.B. Anderson, Heterotic and M-theory Compactifications for String Phenomenology, Ph.D. Thesis, University of Oxford, Oxford U.K. (2008) [arXiv:0808.3621] [INSPIRE].

  64. R. Hartshorne, Graduate Texts in Mathematics. Vol. 52: Algebraic Geometry, Springer-Verlag, Berlin Germany (1977).

  65. P. Griffith and J. Harris, Principles of algebraic geometry, Wiley & Sons Inc., New York U.S.A. (1978).

    Google Scholar 

  66. P.S. Green, T. Hubsch and C.A. Lütken, All Hodge Numbers of All Complete Intersection Calabi-Yau Manifolds, Class. Quant. Grav. 6 (1989) 105 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. R. Barton and M. Eastwood, Duality in Twistor String Theory, Duke Math. J. 48 (1981) 177.

    Article  MathSciNet  Google Scholar 

  68. H. Georgi, Lie Algebras In Particle Physics. From Isospin To Unified Theories, Front. Phys. 54 (1982) 1 [INSPIRE].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara B. Anderson.

Additional information

ArXiv ePrint: 1304.2704

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, L.B., Gray, J., Lukas, A. et al. Vacuum varieties, holomorphic bundles and complex structure stabilization in heterotic theories. J. High Energ. Phys. 2013, 17 (2013). https://doi.org/10.1007/JHEP07(2013)017

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)017

Keywords

Navigation