Skip to main content
Log in

Probing the pattern of holographic thermalization with photons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the behavior of the retarded Green’s function of a U(1) gauge field in holographic \( \mathcal{N} \) = 4 Super Yang-Mills plasma, taking the leading strong coupling corrections into account. First, we use the thermal limit of this quantity to determine the flow of the photon quasinormal mode spectrum away from the infinite ’t Hooft coupling limit, and after this specialize to a specific model of holographic thermalization, in which we evaluate the corresponding spectral density. In the latter case, our primary interest lies in the pattern, with which the spectral density approaches its equilibrium form, and how this process depends on the value of the coupling as well as the photon virtuality. All of the results obtained point consistently towards the weakening of the usual top-down pattern of holographic thermalization, once the coupling is decreased from the λ = ∞ limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tannenbaum, Highlights from BNL-RHIC, arXiv:1201.5900 [INSPIRE].

  2. B. Müller, J. Schukraft and B. Wyslouch, First results from Pb+Pb collisions at the LHC, Ann. Rev. Nucl. Part. Sci. 62 (2012) 361 [arXiv:1202.3233] [INSPIRE].

    Article  ADS  Google Scholar 

  3. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].

  4. P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].

    Article  ADS  Google Scholar 

  6. M.P. Heller, R.A. Janik and P. Witaszczyk, On the character of hydrodynamic gradient expansion in gauge theory plasma, Phys. Rev. Lett. 110 (2013) 211602 [arXiv:1302.0697] [INSPIRE].

    Article  ADS  Google Scholar 

  7. S. Caron-Huot, P.M. Chesler and D. Teaney, Fluctuation, dissipation and thermalization in non-equilibrium AdS 5 black hole geometries, Phys. Rev. D 84 (2011) 026012 [arXiv:1102.1073] [INSPIRE].

    ADS  Google Scholar 

  8. V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].

    Article  ADS  Google Scholar 

  9. V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

    ADS  Google Scholar 

  10. D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP 07 (2012) 096 [arXiv:1205.1548] [INSPIRE].

    Article  ADS  Google Scholar 

  11. E. Caceres and A. Kundu, Holographic thermalization with chemical potential, JHEP 09 (2012) 055 [arXiv:1205.2354] [INSPIRE].

    Article  ADS  Google Scholar 

  12. H. Ebrahim and M. Headrick, Instantaneous thermalization in holographic plasmas, arXiv:1010.5443 [INSPIRE].

  13. J. Erdmenger and S. Lin, Thermalization from gauge/gravity duality: evolution of singularities in unequal time correlators, JHEP 10 (2012) 028 [arXiv:1205.6873] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Rebhan and D. Steineder, Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma, Phys. Rev. Lett. 108 (2012) 021601 [arXiv:1110.6825] [INSPIRE].

    Article  ADS  Google Scholar 

  16. C. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].

    ADS  Google Scholar 

  18. R. Baier, A.H. Mueller, D. Schiff and D. Son, ‘Bottom upthermalization in heavy ion collisions, Phys. Lett. B 502 (2001) 51 [hep-ph/0009237] [INSPIRE].

    ADS  Google Scholar 

  19. J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Turbulent thermalization of the quark gluon plasma, arXiv:1303.5650 [INSPIRE].

  20. A. Kurkela and G.D. Moore, Thermalization in weakly coupled nonabelian plasmas, JHEP 12 (2011) 044 [arXiv:1107.5050] [INSPIRE].

    Article  ADS  Google Scholar 

  21. U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP 02 (2000) 039 [hep-th/9912209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Spherically collapsing matter in AdS, holography and shellons, Nucl. Phys. B 563 (1999) 279 [hep-th/9905227] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Lin and E. Shuryak, Toward the AdS/CFT gravity dual for high energy collisions. 3. Gravitationally collapsing shell and quasiequilibrium, Phys. Rev. D 78 (2008) 125018 [arXiv:0808.0910] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. R. Baier, S.A. Stricker, O. Taanila and A. Vuorinen, Holographic dilepton production in a thermalizing plasma, JHEP 07 (2012) 094 [arXiv:1205.2998] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R. Baier, S.A. Stricker, O. Taanila and A. Vuorinen, Production of prompt photons: holographic duality and thermalization, Phys. Rev. D 86 (2012) 081901 [arXiv:1207.1116] [INSPIRE].

    ADS  Google Scholar 

  26. V. Balasubramanian et al., Thermalization of the spectral function in strongly coupled two dimensional conformal field theories, JHEP 04 (2013) 069 [arXiv:1212.6066] [INSPIRE].

    Article  ADS  Google Scholar 

  27. P. Aurenche, A. Douiri, R. Baier, M. Fontannaz and D. Schiff, Prompt photon production at large p T in QCD beyond the leading order, Phys. Lett. B 140 (1984) 87 [INSPIRE].

    ADS  Google Scholar 

  28. J. Ghiglieri et al., Next-to-leading order thermal photon production in a weakly coupled quark-gluon plasma, JHEP 05 (2013) 010 [arXiv:1302.5970] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton production in supersymmetric Yang-Mills plasma, JHEP 12 (2006) 015 [hep-th/0607237] [INSPIRE].

    Article  ADS  Google Scholar 

  30. B. Hassanain and M. Schvellinger, Diagnostics of plasma photoemission at strong coupling, Phys. Rev. D 85 (2012) 086007 [arXiv:1110.0526] [INSPIRE].

    ADS  Google Scholar 

  31. B. Hassanain and M. Schvellinger, Plasma photoemission from string theory, JHEP 12 (2012) 095 [arXiv:1209.0427] [INSPIRE].

    Article  ADS  Google Scholar 

  32. D. Steineder, S.A. Stricker and A. Vuorinen, Holographic thermalization at intermediate coupling, Phys. Rev. Lett. 110 (2013) 101601 [arXiv:1209.0291] [INSPIRE].

    Article  ADS  Google Scholar 

  33. W.H. Baron and M. Schvellinger, Quantum corrections to dynamical holographic thermalization: entanglement entropy and other non-local observables, arXiv:1305.2237 [INSPIRE].

  34. S. Lin and H.-U. Yee, Out-of-equilibrium chiral magnetic effect at strong coupling, arXiv:1305.3949 [INSPIRE].

  35. X. Zeng and W. Liu, Holographic thermalization in Gauss-Bonnet gravity, arXiv:1305.4841 [INSPIRE].

  36. S.-Y. Wu and D.-L. Yang, Holographic photon production with magnetic field in anisotropic plasmas, arXiv:1305.5509 [INSPIRE].

  37. D. Giataganas, Observables in strongly coupled anisotropic theories, arXiv:1306.1404 [INSPIRE].

  38. B. Wu, On holographic thermalization and gravitational collapse of massless scalar fields, JHEP 10 (2012) 133 [arXiv:1208.1393] [INSPIRE].

    Article  ADS  Google Scholar 

  39. B. Wu, On holographic thermalization and gravitational collapse of tachyonic scalar fields, JHEP 04 (2013) 044 [arXiv:1301.3796] [INSPIRE].

    Article  ADS  Google Scholar 

  40. R. Baier and O. Taanila, in preparation.

  41. R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [INSPIRE].

    ADS  Google Scholar 

  42. M.F. Paulos, Higher derivative terms including the Ramond-Ramond five-form, JHEP 10 (2008) 047 [arXiv:0804.0763] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. J. Pawelczyk and S. Theisen, AdS 5 × S 5 black hole metric at O′3), JHEP 09 (1998) 010 [hep-th/9808126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. J.I. Kapusta and C. Gale, Finite-temperature field theory: principles and applications, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2006) [INSPIRE].

  46. S. Banerjee, R. Iyer and A. Mukhopadhyay, The holographic spectral function in non-equilibrium states, Phys. Rev. D 85 (2012) 106009 [arXiv:1202.1521] [INSPIRE].

    ADS  Google Scholar 

  47. A. Mukhopadhyay, Non-equilibrium fluctuation-dissipation relation from holography, Phys. Rev. D 87 (2013) 066004 [arXiv:1206.3311] [INSPIRE].

    ADS  Google Scholar 

  48. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].

    ADS  Google Scholar 

  50. B. Hassanain and M. Schvellinger, Holographic current correlators at finite coupling and scattering off a supersymmetric plasma, JHEP 04 (2010) 012 [arXiv:0912.4704] [INSPIRE].

    Article  ADS  Google Scholar 

  51. S. de Haro, A. Sinkovics and K. Skenderis, On α corrections to D-brane solutions, Phys. Rev. D 68 (2003) 066001 [hep-th/0302136] [INSPIRE].

    ADS  Google Scholar 

  52. T. Banks and M.B. Green, Nonperturbative effects in AdS 5 × S 5 string theory and D = 4 SUSY Yang-Mills, JHEP 05 (1998) 002 [hep-th/9804170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. A. Núñez and A.O. Starinets, AdS/CFT correspondence, quasinormal modes and thermal correlators in N = 4 SYM, Phys. Rev. D 67 (2003) 124013 [hep-th/0302026] [INSPIRE].

    ADS  Google Scholar 

  54. P. Arnold and D. Vaman, Jet quenching in hot strongly coupled gauge theories simplified, JHEP 04 (2011) 027 [arXiv:1101.2689] [INSPIRE].

    Article  ADS  Google Scholar 

  55. P.M. Chesler and D. Teaney, Dilaton emission and absorption from far-from-equilibrium non-abelian plasma, arXiv:1211.0343 [INSPIRE].

  56. M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].

    Article  ADS  Google Scholar 

  57. M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong coupling isotropization of non-abelian plasmas simplified, Phys. Rev. Lett. 108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].

    Article  ADS  Google Scholar 

  58. W.H. Baron, D. Galante and M. Schvellinger, Dynamics of holographic thermalization, JHEP 03 (2013) 070 [arXiv:1212.5234] [INSPIRE].

    Article  ADS  Google Scholar 

  59. B. Wu and P. Romatschke, Shock wave collisions in AdS 5 : approximate numerical solutions, Int. J. Mod. Phys. C 22 (2011) 1317 [arXiv:1108.3715] [INSPIRE].

    ADS  Google Scholar 

  60. W. van der Schee, Holographic thermalization with radial flow, Phys. Rev. D 87 (2013) 061901 [arXiv:1211.2218] [INSPIRE].

    ADS  Google Scholar 

  61. F.W.J. Olver, Asymptotics and special functions, A.K. Peters, Wellesley U.S.A. (1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksi Vuorinen.

Additional information

ArXiv ePrint: 1304.3404

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steineder, D., Stricker, S.A. & Vuorinen, A. Probing the pattern of holographic thermalization with photons. J. High Energ. Phys. 2013, 14 (2013). https://doi.org/10.1007/JHEP07(2013)014

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)014

Keywords

Navigation