Skip to main content
Log in

A stealth supersymmetry sampler

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The LHC has strongly constrained models of supersymmetry with traditional missing energy signatures. We present a variety of models that realize the concept of Stealth Supersymmetry, i.e. models with R-parity in which one or more nearly-supersymmetric particles (a “stealth sector”) lead to collider signatures with only a small amount of missing energy. The simplest realization involves low-scale supersymmetry breaking, with an R-odd particle decaying to its superpartner and a soft gravitino. We clarify the stealth mechanism and its differences from compressed supersymmetry and explain the requirements for stealth models with high-scale supersymmetry breaking, in which the soft invisible particle is not a gravitino. We also discuss new and distinctive classes of stealth models that couple through a baryon portal or Z′ gauge interactions. Finally, we present updated limits on stealth supersymmetry in light of current LHC searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in sqrts = 7TeV proton-proton collisions, ATLAS-CONF-2011-086 (2011).

  2. R. Essig, E. Izaguirre, J. Kaplan and J.G. Wacker, Heavy flavor simplified models at the LHC, JHEP 01 (2012) 074 [arXiv:1110.6443] [INSPIRE].

    Article  ADS  Google Scholar 

  3. Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].

    Article  ADS  Google Scholar 

  4. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, arXiv:1110.6926 [INSPIRE].

  6. X.-J. Bi, Q.-S. Yan and P.-F. Yin, Probing light stop pairs at the LHC, Phys. Rev. D 85 (2012) 035005 [arXiv:1111.2250] [INSPIRE].

    ADS  Google Scholar 

  7. N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, JHEP 05 (2012) 057 [arXiv:1111.2830] [INSPIRE].

    Article  ADS  Google Scholar 

  8. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = {7}TeV \) proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    ADS  Google Scholar 

  9. CMS collaboration, Search for SUSY in all-hadronic events with missing energy, CMS-PAS-SUS-11-004 (2011).

  10. CMS collaboration, Search for SUSY in all-hadronic events with α T , CMS-PAS SUS-11-003 (2011).

  11. CMS collaboration, Search for new physics with same-sign isolated dilepton events with jets and missing energy, CMS-PAS SUS-11-010 (2011).

  12. ATLAS collaboration, G. Aad et al., Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in \( \sqrt {s} = {7}TeV \) proton-proton collisions, Phys. Lett. B 709 (2012) 137 [arXiv:1110.6189] [INSPIRE].

    ADS  Google Scholar 

  13. CMS collaboration, Search for SUSY with photons, jets and MET, CMS-PAS-SUS-11-009 (2011).

  14. ATLAS collaboration, Search for SUSY and UED in final states with photons and missing transverse energy with the ATLAS detector, ATL-PHYS-SLIDE-2011-523 (2011).

  15. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012)131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Fan, M. Reece and J.T. Ruderman, Stealth supersymmetry, JHEP 11 (2011) 012 [arXiv:1105.5135] [INSPIRE].

    Article  ADS  Google Scholar 

  17. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999)79 [hep-th/9810155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

  19. CMS collaboration, Combination of SM higgs searches, PAS-HIG-11-032 (2011).

  20. ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb −1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163 (2011).

  21. C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, arXiv:1201.1293 [INSPIRE].

  22. T.J. LeCompte and S.P. Martin, Large hadron collider reach for supersymmetric models with compressed mass spectra, Phys. Rev. D 84 (2011) 015004 [arXiv:1105.4304] [INSPIRE].

    ADS  Google Scholar 

  23. T.J. LeCompte and S.P. Martin, Compressed supersymmetry after 1/fb at the Large Hadron Collider, Phys. Rev. D 85 (2012) 035023 [arXiv:1111.6897] [INSPIRE].

    ADS  Google Scholar 

  24. J.M. Campbell, J. Huston and W. Stirling, Hard interactions of quarks and gluons: a primer for LHC physics, Rept. Prog. Phys. 70 (2007) 89 [hep-ph/0611148] [INSPIRE].

    Article  ADS  Google Scholar 

  25. N. Arkani-Hamed et al., MARMOSET: the path from LHC data to the new standard model via on-shell effective theories, hep-ph/0703088 [INSPIRE].

  26. J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Searching for directly decaying gluinos at the Tevatron, Phys. Lett. B 666 (2008) 34 [arXiv:0803.0019] [INSPIRE].

    ADS  Google Scholar 

  27. J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Model-independent jets plus missing energy searches, Phys. Rev. D 79 (2009) 015005 [arXiv:0809.3264] [INSPIRE].

    ADS  Google Scholar 

  28. M. Dine, J.L. Feng and E. Silverstein, Retrofitting ORaifeartaigh models with dynamical scales, Phys. Rev. D 74 (2006) 095012 [hep-th/0608159] [INSPIRE].

    ADS  Google Scholar 

  29. D. Green and T. Weigand, Retrofitting and the μ problem, arXiv:0906.0595 [INSPIRE].

  30. Z. Komargodski and N. Seiberg, μ and general gauge mediation, JHEP 03 (2009) 072 [arXiv:0812.3900] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J.E. Kim and H.P. Nilles, The μ problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [INSPIRE].

    ADS  Google Scholar 

  33. M. Dine, Y. Nir and Y. Shirman, Variations on minimal gauge mediated supersymmetry breaking, Phys. Rev. D 55 (1997) 1501 [hep-ph/9607397] [INSPIRE].

    ADS  Google Scholar 

  34. K. Choi, E.J. Chun, H.D. Kim, W.I. Park and C.S. Shin, The μ-problem and axion in gauge mediation, Phys. Rev. D 83 (2011) 123503 [arXiv:1102.2900] [INSPIRE].

    ADS  Google Scholar 

  35. J. Fan, M. Reece and L.-T. Wang, Mitigating moduli messes in low-scale SUSY breaking, JHEP 09 (2011) 126 [arXiv:1106.6044] [INSPIRE].

    Article  ADS  Google Scholar 

  36. T. Yanagida, A solution to the mu problem in gauge mediated supersymmetry breaking models, Phys. Lett. B 400 (1997) 109 [hep-ph/9701394] [INSPIRE].

    ADS  Google Scholar 

  37. A. Anisimov, M. Dine, M. Graesser and S.D. Thomas, Brane world SUSY breaking, Phys. Rev. D 65 (2002) 105011 [hep-th/0111235] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. A. Anisimov, M. Dine, M. Graesser and S.D. Thomas, Brane world SUSY breaking from string/M theory, JHEP 03 (2002) 036 [hep-th/0201256] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. S. Kachru, J. McGreevy and P. Svrček, Bounds on masses of bulk fields in string compactifications, JHEP 04 (2006) 023 [hep-th/0601111] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Kachru, L. McAllister and R. Sundrum, Sequestering in string theory, JHEP 10 (2007) 013 [hep-th/0703105] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. M. Berg, D. Marsh, L. McAllister and E. Pajer, Sequestering in string compactifications, JHEP 06 (2011) 134 [arXiv:1012.1858] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].

    ADS  Google Scholar 

  43. J. Shelton and K.M. Zurek, Darkogenesis: a baryon asymmetry from the dark matter sector, Phys. Rev. D 82 (2010) 123512 [arXiv:1008.1997] [INSPIRE].

    ADS  Google Scholar 

  44. H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Hylogenesis: a unified origin for baryonic visible matter and antibaryonic dark matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Bagger, E. Poppitz and L. Randall, Destabilizing divergences in supergravity theories at two loops, Nucl. Phys. B 455 (1995) 59 [hep-ph/9505244] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. I. Affleck, M. Dine and N. Seiberg, Supersymmetry breaking by instantons, Phys. Rev. Lett. 51 (1983) 1026 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Dine and J. Kehayias, Discrete R symmetries and low energy supersymmetry, Phys. Rev. D 82 (2010) 055014 [arXiv:0909.1615] [INSPIRE].

    ADS  Google Scholar 

  48. T. Higaki and R. Kitano, On supersymmetric effective theories of axion, arXiv:1104.0170 [INSPIRE].

  49. C. Cheung, G. Elor and L.J. Hall, The cosmological axino problem, Phys. Rev. D 85 (2012) 015008 [arXiv:1104.0692] [INSPIRE].

    ADS  Google Scholar 

  50. B. Bellazzini, C. Csáki, J. Hubisz, J. Shao and P. Tanedo, Goldstone fermion dark matter, JHEP 09 (2011) 035 [arXiv:1106.2162] [INSPIRE].

    Article  ADS  Google Scholar 

  51. K.J. Bae, K. Choi and S.H. Im, Effective interactions of axion supermultiplet and thermal production of axino dark matter, JHEP 08 (2011) 065 [arXiv:1106.2452] [INSPIRE].

    Article  ADS  Google Scholar 

  52. C. Kilic, T. Okui and R. Sundrum, Vectorlike confinement at the LHC, JHEP 02 (2010) 018 [arXiv:0906.0577] [INSPIRE].

    Article  ADS  Google Scholar 

  53. CMS collaboration, Search for heavy stable charged particles, PAS-EXO-11-022 (2011).

  54. G. Farrar, G. Gabadadze and M. Schwetz, On the effective action of N = 1 supersymmetric Yang-Mills theory, Phys. Rev. D 58 (1998) 015009 [hep-th/9711166] [INSPIRE].

    ADS  Google Scholar 

  55. K. Demmouche et al., Simulation of 4D N = 1 supersymmetric Yang-Mills theory with Symanzik improved gauge action and stout smearing, Eur. Phys. J. C 69 (2010) 147 [arXiv:1003.2073] [INSPIRE].

    Article  ADS  Google Scholar 

  56. G. Farrar, G. Gabadadze and M. Schwetz, The spectrum of softly broken N = 1 supersymmetric Yang-Mills theory, Phys. Rev. D 60 (1999) 035002 [hep-th/9806204] [INSPIRE].

    ADS  Google Scholar 

  57. F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].

    Article  ADS  Google Scholar 

  58. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  59. C. Degrande et al., UFOThe universal FeynRules output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    Article  ADS  Google Scholar 

  60. P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman diagram computations, Comput. Phys. Commun. 183 (2012) 2254 [arXiv:1108.2041] [INSPIRE].

    Article  ADS  Google Scholar 

  61. R. Barbieri and A. Masiero, Supersymmetric models with low-energy baryon number violation, Nucl. Phys. B 267 (1986) 679 [INSPIRE].

    Article  ADS  Google Scholar 

  62. P. Slavich, Constraints on R-parity violating stop couplings from flavor physics, Nucl. Phys. B 595 (2001) 33 [hep-ph/0008270] [INSPIRE].

    Article  ADS  Google Scholar 

  63. G. Isidori, Y. Nir and G. Perez, Flavor physics constraints for physics beyond the SM, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900].

    Article  ADS  Google Scholar 

  64. E. Nikolidakis and C. Smith, Minimal flavor violation, seesaw and R-parity, Phys. Rev. D 77 (2008) 015021 [arXiv:0710.3129] [INSPIRE].

    ADS  Google Scholar 

  65. C. Smith, Minimal flavor violation as an alternative to R-parity, arXiv:0809.3152 [INSPIRE].

  66. C. Csáki, Y. Grossman and B. Heidenreich, MFV SUSY: a natural theory for R-parity violation, Phys. Rev. D 85 (2012) 095009 [arXiv:1111.1239] [INSPIRE].

    ADS  Google Scholar 

  67. P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  68. N. Arkani-Hamed, M.A. Luty and J. Terning, Composite quarks and leptons from dynamical supersymmetry breaking without messengers, Phys. Rev. D 58 (1998) 015004 [hep-ph/9712389] [INSPIRE].

    ADS  Google Scholar 

  69. M.A. Luty and J. Terning, Improved single sector supersymmetry breaking, Phys. Rev. D 62 (2000) 075006 [hep-ph/9812290] [INSPIRE].

    ADS  Google Scholar 

  70. M. Gabella, T. Gherghetta and J. Giedt, A gravity dual and LHC study of single-sector supersymmetry breaking, Phys. Rev. D 76 (2007) 055001 [arXiv:0704.3571] [INSPIRE].

    ADS  Google Scholar 

  71. S. Franco and S. Kachru, Single-sector supersymmetry breaking in supersymmetric QCD, Phys. Rev. D 81 (2010) 095020 [arXiv:0907.2689] [INSPIRE].

    ADS  Google Scholar 

  72. N. Craig, R. Essig, S. Franco, S. Kachru and G. Torroba, Dynamical supersymmetry breaking, with flavor, Phys. Rev. D 81 (2010) 075015 [arXiv:0911.2467] [INSPIRE].

    ADS  Google Scholar 

  73. N. Craig, D. Green and A. Katz, (De)Constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].

    Article  ADS  Google Scholar 

  74. J. Goity and M. Sher, Bounds on δB = 1 couplings in the supersymmetric standard model, Phys. Lett. B 346 (1995) 69 [Erratum ibid. B 385 (1996) 500] [hep-ph/9412208] [INSPIRE].

  75. UA2 collaboration, J. Alitti et al., A search for new intermediate vector mesons and excited quarks decaying to two jets at the CERN \( \overline p p \) collider, Nucl. Phys. B 400 (1993) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  76. CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt {s} = {1}.{96}TeV \), Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [INSPIRE].

    ADS  Google Scholar 

  77. P.J. Fox, J. Liu, D. Tucker-Smith and N. Weiner, An effective Z , Phys. Rev. D 84 (2011) 115006 [arXiv:1104.4127] [INSPIRE].

    ADS  Google Scholar 

  78. Gfitter Group collaboration, M. Goebel, Status of the global fit to electroweak precisions data, PoS(ICHEP 2010)570 [arXiv:1012.1331] [INSPIRE].

  79. J. Fan, D. Krohn, P. Langacker and I. Yavin, A higgsophilic s-channel Z and the CDF W +2J anomaly, Phys. Rev. D 84 (2011) 105012 [arXiv:1106.1682] [INSPIRE].

    ADS  Google Scholar 

  80. E. Poppitz and S.P. Trivedi, Some remarks on gauge mediated supersymmetry breaking, Phys. Lett. B 401 (1997) 38 [hep-ph/9703246] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  81. G.D. Kribs, T. Okui and T.S. Roy, Viable gravity-mediated supersymmetry breaking, Phys. Rev. D 82 (2010) 115010 [arXiv:1008.1798] [INSPIRE].

    ADS  Google Scholar 

  82. B. Holdom, Searching for ϵ charges and a new U(1), Phys. Lett. B 178 (1986) 65 [INSPIRE].

    ADS  Google Scholar 

  83. B. Holdom, Oblique electroweak corrections and an extra gauge boson, Phys. Lett. B 259 (1991) 329 [INSPIRE].

    ADS  Google Scholar 

  84. C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [INSPIRE].

    ADS  Google Scholar 

  85. K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [INSPIRE].

    ADS  Google Scholar 

  86. A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].

    MathSciNet  Google Scholar 

  87. B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [INSPIRE].

    ADS  Google Scholar 

  88. N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [INSPIRE].

    Article  ADS  Google Scholar 

  89. M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [INSPIRE].

    Article  ADS  Google Scholar 

  90. C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Lepton jets in (supersymmetric) electroweak processes, JHEP 04 (2010) 116 [arXiv:0909.0290] [INSPIRE].

    Article  ADS  Google Scholar 

  91. CMS collaboration, S. Chatrchyan et al., Search for new physics with jets and missing transverse momentum in pp collisions at \( \sqrt {s} = {7}TeV \), JHEP 08 (2011) 155 [arXiv:1106.4503] [INSPIRE].

    Article  ADS  Google Scholar 

  92. ATLAS collaboration, G. Aad et al., Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using \( \sqrt {s} = {7}TeV \) pp collisions with the ATLAS detector, JHEP 11 (2011) 099 [arXiv:1110.2299] [INSPIRE].

    Article  ADS  Google Scholar 

  93. CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].

    Article  ADS  Google Scholar 

  94. CMS collaboration, Search for supersymmetry in all-hadronic events with MT2, PAS-SUS-11-005 (2011).

  95. CMS collaboration, Search for supersymmetry with the razor variables at CMS, PAS-SUS-11-008 (2011).

  96. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  97. J. Conway, PGS: Pretty Good Simulator, http://physics.ucdavis.edu/∼conway/research/software/pgs/pgs4-general.htm.

  98. W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

    ADS  Google Scholar 

  99. CMS collaboration, S. Chatrchyan et al., Search for signatures of extra dimensions in the diphoton mass spectrum at the Large Hadron Collider, arXiv:1112.0688 [INSPIRE].

  100. ATLAS collaboration, G. Aad et al., Search for extra dimensions using diphoton events in 7 TeV proton-proton collisions with the ATLAS detector, Phys. Lett. B 710 (2012) 538 [arXiv:1112.2194] [INSPIRE].

    ADS  Google Scholar 

  101. T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].

    ADS  Google Scholar 

  102. CMS collaboration, Search for a Higgs boson decaying into two photons in the CMS detector, PAS-HIG-11-030 (2011).

  103. ATLAS collaboration, Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb −1 of ATLAS data at \( \sqrt {s} = {7}TeV \), ATLAS-CONF-2011-161 (2011).

  104. C. Csáki and H. Murayama, Discrete anomaly matching, Nucl. Phys. B 515 (1998) 114 [hep-th/9710105] [INSPIRE].

    Article  ADS  Google Scholar 

  105. A. Pomarol and R. Rattazzi, Sparticle masses from the superconformal anomaly, JHEP 05 (1999) 013 [hep-ph/9903448] [INSPIRE].

    Article  ADS  Google Scholar 

  106. E. Katz, Y. Shadmi and Y. Shirman, Heavy thresholds, slepton masses and the μ term in anomaly mediated supersymmetry breaking, JHEP 08 (1999) 015 [hep-ph/9906296] [INSPIRE].

    Article  ADS  Google Scholar 

  107. D. Sanford and Y. Shirman, Anomaly mediation from Randall-Sundrum to Dine-Seiberg, Phys. Rev. D 83 (2011) 125020 [arXiv:1012.1860] [INSPIRE].

    ADS  Google Scholar 

  108. N. Arkani-Hamed, D.E. Kaplan, H. Murayama and Y. Nomura, Viable ultraviolet insensitive supersymmetry breaking, JHEP 02 (2001) 041 [hep-ph/0012103] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Reece.

Additional information

ArXiv ePrint: 1201.4875

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, J., Reece, M. & Ruderman, J.T. A stealth supersymmetry sampler. J. High Energ. Phys. 2012, 196 (2012). https://doi.org/10.1007/JHEP07(2012)196

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)196

Keywords

Navigation