Skip to main content
Log in

Fluid/gravity correspondence, local Wald entropy current and gravitational anomaly

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose, in the framework of the fluid/gravity correspondence, a definition for a local horizon entropy current for higher-curvature gravitational theories. The current is well-defined to first order in fluid gradients for general gravity actions with an algebraic dependence on the Riemann tensor. As a detailed example, we consider five-dimensional Einstein-Maxwell theory with a mixed gauge-gravitational Chern-Simons term. In this theory, we construct the proposed entropy current on a charged black-brane background, and show that it has a non-negative divergence. Moreover, a complete correspondence between the charged black-brane horizon’s dynamics and the hydrodynamics of an anomalous four-dimensional field theory is established. Our proposed entropy current is then found to coincide with the entropy current of the anomalous field theory fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  3. T. Damour, Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs, These de doctorat d’etat, University of Paris VI (1979), unpublished.

  4. T. Damour, Surface Effects in Black-Hole Physics, in proceedings of Second Marcel Grossmann Meeting on General Relativity, R. Ruffini ed., North-Holland, Amsterdam (1982), pg. 587.

  5. C. Eling, I. Fouxon and Y. Oz, The Incompressible Navier-Stokes Equations From Membrane Dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. C. Eling and Y. Oz, Relativistic CFT Hydrodynamics from the Membrane Paradigm, JHEP 02 (2010) 069 [arXiv:0906.4999] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes To Einstein, arXiv:1101.2451 [INSPIRE].

  8. G. Compere, P. McFadden, K. Skenderis and M. Taylor, The relativistic fluid dual to vacuum Einstein gravity, JHEP 03 (2012) 076 [arXiv:1201.2678] [INSPIRE].

    Article  ADS  Google Scholar 

  9. C. Eling, A. Meyer and Y. Oz, The Relativistic Rindler Hydrodynamics, JHEP 05 (2012) 116 [arXiv:1201.2705] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. S. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  12. S. Bhattacharyya et al., Local Fluid Dynamical Entropy from Gravity, JHEP 06 (2008) 055 [arXiv:0803.2526] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. C. Eling, Y. Neiman and Y. Oz, Holographic Non-Abelian Charged Hydrodynamics from the Dynamics of Null Horizons, JHEP 12 (2010) 086 [arXiv:1010.1290] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Jacobson, G. Kang and R.C. Myers, Increase of black hole entropy in higher curvature gravity, Phys. Rev. D 52 (1995) 3518 [gr-qc/9503020] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. S. Kolekar, T. Padmanabhan and S. Sarkar, Entropy increase during physical processes for black holes in Lanczos-Lovelock gravity, arXiv:1201.2947 [INSPIRE].

  17. J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam and P. Surowka, Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].

    Article  ADS  Google Scholar 

  19. I. Amado, K. Landsteiner and F. Pena-Benitez, Anomalous transport coefficients from Kubo formulas in Holography, JHEP 05 (2011) 081 [arXiv:1102.4577] [INSPIRE].

    Article  ADS  Google Scholar 

  20. K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez, Holographic Gravitational Anomaly and Chiral Vortical Effect, JHEP 09 (2011) 121 [arXiv:1107.0368] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational Anomaly and Transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].

    Article  ADS  Google Scholar 

  22. D.T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. Y. Neiman and Y. Oz, Relativistic Hydrodynamics with General Anomalous Charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The Effects of topological charge change in heavy ion collisions: ’Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].

    ADS  Google Scholar 

  25. D.E. Kharzeev and D.T. Son, Testing the chiral magnetic and chiral vortical effects in heavy ion collisions, Phys. Rev. Lett. 106 (2011) 062301 [arXiv:1010.0038] [INSPIRE].

    Article  ADS  Google Scholar 

  26. B. Keren-Zur and Y. Oz, Hydrodynamics and the Detection of the QCD Axial Anomaly in Heavy Ion Collisions, JHEP 06 (2010) 006 [arXiv:1002.0804] [INSPIRE].

    Article  ADS  Google Scholar 

  27. STAR collaboration, B. Abelev et al., Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation, Phys. Rev. Lett. 103 (2009) 251601 [arXiv:0909.1739] [INSPIRE].

    Article  ADS  Google Scholar 

  28. T. Kalaydzhyan and I. Kirsch, Fluid/gravity model for the chiral magnetic effect, Phys. Rev. Lett. 106 (2011) 211601 [arXiv:1102.4334] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett. 26 (1971) 1344 [INSPIRE].

    Article  ADS  Google Scholar 

  30. R. Loganayagam, Entropy Current in Conformal Hydrodynamics, JHEP 05 (2008) 087 [arXiv:0801.3701] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. G. Lopes Cardoso, B. de Wit and T. Mohaupt, Deviations from the area law for supersymmetric black holes, Fortsch. Phys. 48 (2000) 49 [hep-th/9904005] [INSPIRE].

    Article  ADS  Google Scholar 

  33. I. Racz and R.M. Wald, Extension of space-times with Killing horizon, Class. Quant. Grav. 9 (1992) 2643 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shira Chapman.

Additional information

ArXiv ePrint: 1202.2469

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, S., Neiman, Y. & Oz, Y. Fluid/gravity correspondence, local Wald entropy current and gravitational anomaly. J. High Energ. Phys. 2012, 128 (2012). https://doi.org/10.1007/JHEP07(2012)128

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)128

Keywords

Navigation