Skip to main content
Log in

Revisiting scalar and pseudoscalar couplings with nucleons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Certain dark matter interactions with nuclei are mediated possibly by a scalar or pseudoscalar Higgs boson. The estimation of the corresponding cross sections requires a correct evaluation of the couplings between the scalar or pseudoscalar Higgs boson and the nucleons. Progress has been made in two aspects relevant to this study in the past few years. First, recent lattice calculations show that the strange-quark sigma term σs and the strange-quark content in the nucleon are much smaller than what are expected previously. Second, lattice and model analyses imply sizable SU(3) breaking effects in the determination on the axial-vector coupling constant \( g_A^8 \) that in turn affect the extraction of the isosinglet coupling \( g_A^0 \) and the strange quark spin component Δs from polarized deep inelastic scattering experiments. Based on these new developments, we re-evaluate the relevant nucleon matrix elements and compute the scalar and pseudoscalar couplings of the proton and neutron. We also find that the strange quark contribution in both types of couplings is smaller than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Shifman, A. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].

    ADS  Google Scholar 

  2. T. Cheng, Chiral symmetry and the Higgs nucleon coupling, Phys. Rev. D 38 (1988) 2869 [INSPIRE].

    ADS  Google Scholar 

  3. H.-Y. Cheng, Low-energy interactions of scalar and pseudoscalar Higgs bosons with baryons, Phys. Lett. B 219 (1989) 347 [INSPIRE].

    ADS  Google Scholar 

  4. H.-Y. Cheng, The strong CP problem revisited, Phys. Rept. 158 (1988) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  5. H.-W. Lin, Lattice QCD for precision nucleon matrix elements, arXiv:1112.2435 [INSPIRE].

  6. QCDSF collaboration, G.S. Bali et al., Strangeness contribution to the proton spin from lattice QCD, Phys. Rev. Lett. 108 (2012) 222001 [arXiv:1112.3354] [INSPIRE].

    Article  ADS  Google Scholar 

  7. S.D. Bass and A.W. Thomas, The nucleons octet axial-charge \( g_A^{{(8)}} \) with chiral corrections, Phys. Lett. B 684 (2010) 216 [arXiv:0912.1765] [INSPIRE].

    ADS  Google Scholar 

  8. S. Scherer and M.R. Schindler, Chiral perturbation theory for baryons, Lect. Notes Phys. 830 (2012) 145 [INSPIRE].

    Article  Google Scholar 

  9. J. Gasser, Hadron masses and sigma commutator in the light of chiral perturbation theory, Annals Phys. 136 (1981) 62 [INSPIRE].

    Article  ADS  Google Scholar 

  10. J. Gasser, H. Leutwyler and M. Sainio, Sigma term update, Phys. Lett. B 253 (1991) 252 [INSPIRE].

    ADS  Google Scholar 

  11. E.E. Jenkins and A.V. Manohar, The sigma term and \( m_s^{{{{3} \left/ {2} \right.}}} \) corrections to the proton mass, Phys. Lett. B 281 (1992) 336 [INSPIRE].

    ADS  Google Scholar 

  12. V. Bernard, N. Kaiser and U.G. Meissner, Critical analysis of baryon masses and sigma terms in heavy baryon chiral perturbation theory, Z. Phys. C 60 (1993) 111 [hep-ph/9303311] [INSPIRE].

    ADS  Google Scholar 

  13. B. Borasoy and U.-G. Meissner, Baryon masses and pion-nucleon sigma term to second order in the quark masses, Phys. Lett. B 365 (1996) 285 [hep-ph/9508354] [INSPIRE].

    ADS  Google Scholar 

  14. B. Borasoy and U.-G. Meissner, Chiral expansion of baryon masses and sigma terms, Annals Phys. 254 (1997) 192 [hep-ph/9607432] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Schindler, D. Djukanovic, J. Gegelia and S. Scherer, Chiral expansion of the nucleon mass to order O(q 6), Phys. Lett. B 649 (2007) 390 [hep-ph/0612164] [INSPIRE].

    ADS  Google Scholar 

  16. J. Gasser, M. Sainio and A. Svarc, Nucleons with chiral loops, Nucl. Phys. B 307 (1988) 779 [INSPIRE].

    Article  ADS  Google Scholar 

  17. J. Gasser and H. Leutwyler, Quark masses, Phys. Rept. 87 (1982) 77 [INSPIRE].

    Article  ADS  Google Scholar 

  18. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE] and 2011 partial update for the 2012 edition.

  19. JLQCD collaboration, K. Takeda et al., Nucleon strange quark content from two-flavor lattice QCD with exact chiral symmetry, Phys. Rev. D 83 (2011) 114506 [arXiv:1011.1964] [INSPIRE].

    ADS  Google Scholar 

  20. JLQCD collaboration, K. Takeda et al., Nucleon strange quark content in 2 + 1-flavor QCD, PoS(LATTICE 2010)160 [arXiv:1012.1907] [INSPIRE].

  21. QCDSF collaboration, G.S. Bali et al., The strange and light quark contributions to the nucleon mass from Lattice QCD, Phys. Rev. D 85 (2012) 054502 [arXiv:1111.1600] [INSPIRE].

    ADS  Google Scholar 

  22. M. Engelhardt, Strangeness in the nucleon from a mixed action calculation, PoS(LATTICE 2010)137 [arXiv:1011.6058] [INSPIRE].

  23. S. Dinter et al., Sigma terms and strangeness content of the nucleon with \( {N_f} = 2 + 1 + 1 \) twisted mass fermions, arXiv:1202.1480 [INSPIRE].

  24. JLQCD collaboration, H. Ohki et al., Nucleon sigma term and strange quark content from lattice QCD with exact chiral symmetry, Phys. Rev. D 78 (2008) 054502 [arXiv:0806.4744] [INSPIRE].

    ADS  Google Scholar 

  25. MILC collaboration, D. Toussaint and W. Freeman, The strange quark condensate in the nucleon in 2 + 1 flavor QCD, Phys. Rev. Lett. 103 (2009) 122002 [arXiv:0905.2432] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Young and A. Thomas, Octet baryon masses and sigma terms from an SU(3) chiral extrapolation, Phys. Rev. D 81 (2010) 014503 [arXiv:0901.3310] [INSPIRE].

    ADS  Google Scholar 

  27. S. Dürr et al., Sigma term and strangeness content of octet baryons, Phys. Rev. D 85 (2012) 014509 [arXiv:1109.4265] [INSPIRE].

    ADS  Google Scholar 

  28. R. Horsley et al., Hyperon sigma terms for 2 + 1 quark flavours, Phys. Rev. D 85 (2012) 034506 [arXiv:1110.4971] [INSPIRE].

    ADS  Google Scholar 

  29. T. Becher and H. Leutwyler, Low energy analysis of πN → πN , JHEP 06 (2001) 017 [hep-ph/0103263] [INSPIRE].

    Article  ADS  Google Scholar 

  30. R. Koch, A new determination of the πN sigma term using hyperbolic dispersion relations in the2 , t) plane, Z. Phys. C 15 (1982) 161 [INSPIRE].

    ADS  Google Scholar 

  31. M. Olsson, The nucleon sigma term from threshold parameters, Phys. Lett. B 482 (2000) 50 [hep-ph/0001203] [INSPIRE].

    ADS  Google Scholar 

  32. M. Pavan, I. Strakovsky, R. Workman and R. Arndt, The pion nucleon sigma term is definitely large: results from a G.W.U. analysis of π nucleon scattering data, PiN Newslett. 16 (2002)110 [hep-ph/0111066] [INSPIRE].

    Google Scholar 

  33. G.E. Hite, W.B. Kaufmann and R.J. Jacob, New evaluation of the πN sigma term, Phys. Rev. C 71 (2005) 065201 [INSPIRE].

    ADS  Google Scholar 

  34. J. Alarcon, J. Martin Camalich and J. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].

    ADS  Google Scholar 

  35. J. Martin Camalich, J. Alarcon and J. Oller, Relativistic chiral representation of the πN scattering amplitude II: the pion-nucleon sigma term, Prog. Part. Nucl. Phys. 67 (2012) 327 [arXiv:1111.4934] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J. Martin Camalich, L. Geng and M. Vicente Vacas, The lowest-lying baryon masses in covariant SU(3)-flavor chiral perturbation theory, Phys. Rev. D 82 (2010) 074504 [arXiv:1003.1929] [INSPIRE].

    ADS  Google Scholar 

  37. H.-Y. Cheng, Status of the proton spin problem, Int. J. Mod. Phys. A 11 (1996) 5109 [hep-ph/9607254] [INSPIRE].

    ADS  Google Scholar 

  38. S. Larin, T. van Ritbergen and J. Vermaseren, The \( \alpha_S^3 \) approximation of quantum chromodynamics to the Ellis-Jaffe sum rule, Phys. Lett. B 404 (1997) 153 [hep-ph/9702435] [INSPIRE].

    ADS  Google Scholar 

  39. European Muon collaboration, J. Ashman et al., A measurement of the spin asymmetry and determination of the structure function g 1 in deep inelastic muon-proton scattering, Phys. Lett. B 206 (1988) 364 [INSPIRE].

    ADS  Google Scholar 

  40. S.J. Brodsky, J.R. Ellis and M. Karliner, Chiral symmetry and the spin of the proton, Phys. Lett. B 206 (1988) 309 [INSPIRE].

    ADS  Google Scholar 

  41. M. Wakamatsu and H. Yoshiki, A chiral quark model of the nucleon, Nucl. Phys. A 524 (1991) 561 [INSPIRE].

    ADS  Google Scholar 

  42. Riazuddin and Fayyazuddin, Strange quark content of the proton, Phys. Rev. D 38 (1988) 944 [INSPIRE].

  43. A. Anselm, V. Bunakov, V.P. Gudkov and N. Uraltsev, On the neutron electric dipole moment in the Weinberg CP-violation model, Phys. Lett. B 152 (1985) 116 [JETP Lett. 40 (1984)1102] [Pisma Zh. Eksp. Teor. Fiz. 40 (1984) 310] [INSPIRE].

    ADS  Google Scholar 

  44. T. Cheng and L.-F. Li, Comments on the neutron electric dipole moment in the Weinberg model of CP-violation, Phys. Lett. B 234 (1990) 165 [INSPIRE].

    ADS  Google Scholar 

  45. T. Cheng and L.-F. Li, Axial anomaly and the proton spin, Phys. Rev. Lett. 62 (1989) 1441 [INSPIRE].

    Article  ADS  Google Scholar 

  46. C. Geng and J.N. Ng, Comments on pseudoscalar-nucleon coupling, Phys. Lett. B 243 (1990) 451 [INSPIRE].

    ADS  Google Scholar 

  47. D.J. Gross, S. Treiman and F. Wilczek, Light quark masses and isospin violation, Phys. Rev. D 19 (1979) 2188 [INSPIRE].

    ADS  Google Scholar 

  48. G. Lopez Castro and J. Pestieau, Isospin violation in heavy quark pseudoscalar currents, Phys. Lett. B 222 (1989) 459 [INSPIRE].

    ADS  Google Scholar 

  49. V. Baluni, CP violating effects in QCD, Phys. Rev. D 19 (1979) 2227 [INSPIRE].

    ADS  Google Scholar 

  50. H.-Y. Cheng, Reanalysis of strong CP-violating effects in chiral perturbation theory, Phys. Rev. D 44 (1991) 166 [INSPIRE].

    ADS  Google Scholar 

  51. S. Aoki, A. Gocksch, A. Manohar and S.R. Sharpe, Calculating the neutron electric dipole moment on the lattice, Phys. Rev. Lett. 65 (1990) 1092 [INSPIRE].

    Article  ADS  Google Scholar 

  52. S. Aoki and T. Hatsuda, Strong CP-violation and the neutron electric dipole moment revisited, Phys. Rev. D 45 (1992) 2427 [INSPIRE].

    ADS  Google Scholar 

  53. A. Abada et al., Cancellation of the neutron electric dipole moment in quark model calculations of Balunis CP-violating strong interaction, Phys. Lett. B 256 (1991) 508 [INSPIRE].

    ADS  Google Scholar 

  54. M. Srednicki, Axion couplings to matter. 1. CP conserving parts, Nucl. Phys. B 260 (1985) 689 [INSPIRE].

    Article  ADS  Google Scholar 

  55. F. Close and R. Roberts, Consistent analysis of the spin content of the nucleon, Phys. Lett. B 316 (1993) 165 [hep-ph/9306289] [INSPIRE].

    ADS  Google Scholar 

  56. COMPASS collaboration, V.Y. Alexakhin et al., The deuteron spin-dependent structure function g 1 and its first moment, Phys. Lett. B 647 (2007) 8 [hep-ex/0609038] [INSPIRE].

    ADS  Google Scholar 

  57. HERMES collaboration, A. Airapetian et al., Precise determination of the spin structure function g 1 of the proton, deuteron and neutron, Phys. Rev. D 75 (2007) 012007 [hep-ex/0609039] [INSPIRE].

    ADS  Google Scholar 

  58. R. Jaffe and A. Manohar, Deep inelastic scattering from arbitrary spin targets, Nucl. Phys. B 321 (1989) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  59. E. Leader, A.V. Sidorov and D.B. Stamenov, On the sensitivity of the polarized parton densities to flavor SU(3) symmetry breaking, Phys. Lett. B 488 (2000) 283 [hep-ph/0004106] [INSPIRE].

    ADS  Google Scholar 

  60. M. Karliner and H.J. Lipkin, Nucleon spin with and without hyperon data: a new tool for analysis, Phys. Lett. B 461 (1999) 280 [hep-ph/9906321] [INSPIRE].

    ADS  Google Scholar 

  61. M.J. Savage and J. Walden, SU(3) breaking in neutral current axial matrix elements and the spin content of the nucleon, Phys. Rev. D 55 (1997) 5376 [hep-ph/9611210] [INSPIRE].

    ADS  Google Scholar 

  62. P. Gondolo et al., DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].

    Article  ADS  Google Scholar 

  63. J.R. Ellis, A. Ferstl and K.A. Olive, Reevaluation of the elastic scattering of supersymmetric dark matter, Phys. Lett. B 481 (2000) 304 [hep-ph/0001005] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Wei Chiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, HY., Chiang, CW. Revisiting scalar and pseudoscalar couplings with nucleons. J. High Energ. Phys. 2012, 9 (2012). https://doi.org/10.1007/JHEP07(2012)009

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)009

Keywords

Navigation