Abstract
Strengthening constraints on new physics from the \( \overline{B}\to {X}_s\gamma \) branching ratio requires improving accuracy in the measurements and the Standard Model predictions. To match the expected Belle-II accuracy, Next-to-Next-to-Leading Order (NNLO) QCD corrections must be calculated without the so-far employed interpolation in the charm- quark mass mc. In the process of evaluating such corrections at the physical value of mc, we have finalized the part coming from diagrams with closed fermion loops on the gluon lines that contribute to the interference of the current-current and photonic dipole operators. We confirm several published results for corrections of this type, and supplement them with a previously uncalculated piece. Taking into account the recently improved estimates of non-perturbative contributions, we find ℬsγ = (3.40±0.17)×10−4 and Rγ ≡ \( {\mathrm{\mathcal{B}}}_{\left(s+d\right)\gamma }/{\mathrm{\mathcal{B}}}_{c\mathrm{\ell}\overline{v}} \) = (3.35 ± 0.16) × 10−3 for Eγ > 1.6 GeV in the decaying meson rest frame.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
S.L. Glashow, J. Iliopoulos and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].
J. Aebischer, W. Altmannshofer, D. Guadagnoli, M. Reboud, P. Stangl and D.M. Straub, B-decay discrepancies after Moriond 2019, Eur. Phys. J. C 80 (2020) 252 [arXiv:1903.10434] [INSPIRE].
CLEO collaboration, Branching fraction and photon energy spectrum for b → sγ, Phys. Rev. Lett. 87 (2001) 251807 [hep-ex/0108032] [INSPIRE].
BaBar collaboration, Measurement of the B → Xs γ branching fraction and photon energy spectrum using the recoil method, Phys. Rev. D 77 (2008) 051103 [arXiv:0711.4889] [INSPIRE].
BaBar collaboration, Exclusive Measurements of b → sγ Transition Rate and Photon Energy Spectrum, Phys. Rev. D 86 (2012) 052012 [arXiv:1207.2520] [INSPIRE].
BaBar collaboration, Precision Measurement of the B → Xs γ Photon Energy Spectrum, Branching Fraction and Direct CP Asymmetry AC P (B → Xs+d γ), Phys. Rev. Lett. 109 (2012) 191801 [arXiv:1207.2690] [INSPIRE].
Belle collaboration, Measurement of the \( \overline{B}\to {X}_s\gamma \) Branching Fraction with a Sum of Exclusive Decays, Phys. Rev. D 91 (2015) 052004 [arXiv:1411.7198] [INSPIRE].
Belle collaboration, Measurement of the inclusive B → Xs+d γ branching fraction, photon energy spectrum and HQE parameters, in 38th International Conference on High Energy Physics, (2016) [arXiv:1608.02344] [INSPIRE].
HFLAV collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of 2018, arXiv:1909.12524 [INSPIRE].
Belle-II collaboration, The Belle II Physics Book, PTEP 2019 (2019) 123C01 [Erratum ibid. 2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].
A. Ishikawa, Prospects for future Belle-II measurements, talk at the 7th Workshop on Rare Semileptonic B Decays, Lyon, France, 4–6 September 2019 [https://indico.in2p3.fr/event/18646].
M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].
M. Czakon, P. Fiedler, T. Huber, M. Misiak, T. Schutzmeier and M. Steinhauser, The (Q7 , Q1,2 ) contribution to \( \overline{B}\to {X}_s\gamma \) at \( \mathcal{O}\left({\alpha}_{\mathrm{s}}^2\right) \), JHEP 04 (2015) 168 [arXiv:1503.01791] [INSPIRE].
A. Alberti, P. Gambino, K.J. Healey and S. Nandi, Precision Determination of the Cabibbo-Kobayashi-Maskawa Element Vcb , Phys. Rev. Lett. 114 (2015) 061802 [arXiv:1411.6560] [INSPIRE].
M. Misiak and M. Steinhauser, Three loop matching of the dipole operators for b → sγ and b → sg, Nucl. Phys. B 683 (2004) 277 [hep-ph/0401041] [INSPIRE].
M. Czakon, U. Haisch and M. Misiak, Four-Loop Anomalous Dimensions for Radiative Flavour-Changing Decays, JHEP 03 (2007) 008 [hep-ph/0612329] [INSPIRE].
I.R. Blokland, A. Czarnecki, M. Misiak, M. Ślusarczyk and F. Tkachov, The Electromagnetic dipole operator effect on \( \overline{B}\to {X}_s\gamma \) at \( \mathcal{O}\left({\alpha}_s^2\right) \), Phys. Rev. D 72 (2005) 033014 [hep-ph/0506055] [INSPIRE].
K. Melnikov and A. Mitov, The photon energy spectrum in \( \overline{B}\to {X}_s+\gamma \) in perturbative QCD through \( \mathcal{O}\left({\alpha}_s^2\right) \), Phys. Lett. B 620 (2005) 69 [hep-ph/0505097] [INSPIRE].
H.M. Asatrian, A. Hovhannisyan, V. Poghosyan, T. Ewerth, C. Greub and T. Hurth, NNLL QCD contribution of the electromagnetic dipole operator to Γ(\( \overline{B}\to {X}_s\gamma \)), Nucl. Phys. B 749 (2006) 325 [hep-ph/0605009] [INSPIRE].
H.M. Asatrian, T. Ewerth, A. Ferroglia, P. Gambino and C. Greub, Magnetic dipole operator contributions to the photon energy spectrum in \( \overline{B}\to {X}_s\gamma \) at O(α2 ), Nucl. Phys. B 762 (2007) 212 [hep-ph/0607316] [INSPIRE].
H.M. Asatrian, T. Ewerth, H. Gabrielyan and C. Greub, Charm quark mass dependence of the electromagnetic dipole operator contribution to \( \overline{B}\to {X}_s\gamma \) at \( \mathcal{O}\left({\alpha}_s^2\right) \), Phys. Lett. B 647 (2007) 173 [hep-ph/0611123] [INSPIRE].
M. Misiak and M. Steinhauser, NNLO QCD corrections to the \( \overline{B}\to {X}_s\gamma \) matrix elements using interpolation in mc , Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [INSPIRE].
M. Misiak and M. Steinhauser, Large-mc Asymptotic Behaviour of \( \mathcal{O}\left({\alpha}_s^2\right) \) Corrections to \( \overline{B}\to {X}_s\gamma \), Nucl. Phys. B 840 (2010) 271 [arXiv:1005.1173] [INSPIRE].
Z. Ligeti, M.E. Luke, A.V. Manohar and M.B. Wise, The \( \overline{B}\to {X}_s\gamma \) photon spectrum, Phys. Rev. D 60 (1999) 034019 [hep-ph/9903305] [INSPIRE].
K. Bieri, C. Greub and M. Steinhauser, Fermionic NNLL corrections to b → sγ, Phys. Rev. D 67 (2003) 114019 [hep-ph/0302051] [INSPIRE].
R. Boughezal, M. Czakon and T. Schutzmeier, NNLO fermionic corrections to the charm quark mass dependent matrix elements in \( \overline{B}\to {X}_s\gamma \), JHEP 09 (2007) 072 [arXiv:0707.3090] [INSPIRE].
M. Misiak and M. Poradziński, Completing the Calculation of BLM corrections to \( \overline{B}\to {X}_s\gamma \), Phys. Rev. D 83 (2011) 014024 [arXiv:1009.5685] [INSPIRE].
A. Gunawardana and G. Paz, Reevaluating uncertainties in \( \overline{B}\to {X}_s\gamma \) decay, JHEP 11 (2019) 141 [arXiv:1908.02812] [INSPIRE].
P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].
J. Kublbeck, M. B¨ohm and A. Denner, Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].
T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].
F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].
K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
P. Maierh¨ofer, J. Usovitsch and P. Uwer, Kira — A Feynman integral reduction program, Comput. Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].
P. Maierh¨ofer and J. Usovitsch, Kira 1.2 Release Notes, arXiv:1812.01491 [INSPIRE].
A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].
A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, arXiv:1901.07808 [INSPIRE].
R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].
E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].
T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
M. Misiak, A. Rehman and M. Steinhauser, NNLO QCD counterterm contributions to \( \overline{B}\to {X}_s\gamma \) for the physical value of mc , Phys. Lett. B 770 (2017) 431 [arXiv:1702.07674] [INSPIRE].
A. Rehman, Strong Interaction Corrections to the Weak Radiative B-Meson Decay at Order \( O\left({\alpha}_s^2\right) \) with Exact Dependence on the c-Quark Mass, Ph.D. Thesis, University of Warsaw (2015) [http://depotuw.ceon.pl/handle/item/1197].
V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1.
R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of O(ααs ) to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].
T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, in 6th International Workshop on New Computing Techniques in Physics Research: Software Engineering, Artificial Intelligence Neural Nets, Genetic Algorithms, Symbolic Algebra, Automatic Calculation, (1999) [hep-ph/9905298] [INSPIRE].
M. Czaja, T. Huber, G. Mishima, M. Misiak, A. Rehman and M. Steinhauser, in preparation.
P.N. Brown, G.D. Byrne and A.C. Hindmarsh, ZVODE, http://netlib.sandia.gov/ode/zvode.f .
Y. Hida, X.S. Li and D.H. Bailey, QD computation package, http://crd-legacy.lbl.gov/∼dhbailey/mpdist.
S.J. Brodsky, G. Lepage and P.B. Mackenzie, On the Elimination of Scale Ambiguities in Perturbative Quantum Chromodynamics, Phys. Rev. D 28 (1983) 228 [INSPIRE].
Belle collaboration, Measurements of isospin asymmetry and difference of direct C P asymmetries in inclusive B → Xs γ decays, Phys. Rev. D 99 (2019) 032012 [arXiv:1807.04236] [INSPIRE].
S.J. Lee, M. Neubert and G. Paz, Enhanced Non-local Power Corrections to the \( \overline{B}\to {X}_s\gamma \) Decay Rate, Phys. Rev. D 75 (2007) 114005 [hep-ph/0609224] [INSPIRE].
M. Benzke, S.J. Lee, M. Neubert and G. Paz, Factorization at Subleading Power and Irreducible Uncertainties in \( \overline{B}\to {X}_s\gamma \) Decay, JHEP 08 (2010) 099 [arXiv:1003.5012] [INSPIRE].
M. Misiak, \( \overline{B}\to {X}_s\gamma \): Current Status, Acta Phys. Polon. B 40 (2009) 2987 [arXiv:0911.1651] [INSPIRE].
L.A. Goodman, On the Exact Variance of Products, J. Am. Statist. Assoc. 55 (1960) 708.
Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
http://pdg.lbl.gov/2019/listings/rpp2019-list-B-plus-minus-B0-admixture.pdf , update on p. 66.
M.B. Voloshin, Large \( \mathcal{O}\left({m}_c^{-2}\right) \) nonperturbative correction to the inclusive rate of the decay B → Xs γ, Phys. Lett. B 397 (1997) 275 [hep-ph/9612483] [INSPIRE].
G. Buchalla, G. Isidori and S.J. Rey, Corrections of order \( {\Lambda}_{QCD}^2/{m}_c^2 \)Λ2/m2 to inclusive rare B decays, Nucl. Phys. B 511 (1998) 594 [hep-ph/9705253] [INSPIRE].
A. Kapustin, Z. Ligeti and H. Politzer, Leading logarithms of the b quark mass in inclusive B → Xs γ decay, Phys. Lett. B 357 (1995) 653 [hep-ph/9507248] [INSPIRE].
A. Ferroglia and U. Haisch, Chromomagnetic Dipole-Operator Corrections in \( \overline{B}\to {X}_s\gamma \) at \( O\left({\beta}_0{\alpha}_s^2\right) \), Phys. Rev. D 82 (2010) 094012 [arXiv:1009.2144] [INSPIRE].
C. Bobeth, M. Misiak and J. Urban, Matching conditions for b → sγ and b → s gluon in extensions of the standard model, Nucl. Phys. B 567 (2000) 153 [hep-ph/9904413] [INSPIRE].
T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B}\to {X}_s\gamma \) in the Two Higgs Doublet Model up to Next-to-Next-to-Leading Order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].
M. Misiak and M. Steinhauser, Weak radiative decays of the B meson and bounds on MH ± in the Two-Higgs-Doublet Model, Eur. Phys. J. C 77 (2017) 201 [arXiv:1702.04571] [INSPIRE].
M. Benzke and T. Hurth, Resolved 1/mb contributions to b → sℓℓ and b → sγ, arXiv:2006.00624 [INSPIRE].
A.J. Buras, A. Czarnecki, M. Misiak and J. Urban, Completing the NLO QCD calculation of \( \overline{B}\to {X}_s\gamma \), Nucl. Phys. B 631 (2002) 219 [hep-ph/0203135] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2002.01548
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Misiak, Ml., Rehman, A. & Steinhauser, M. Towards \( \overline{B}\to {X}_s\gamma \) at the NNLO in QCD without interpolation in mc. J. High Energ. Phys. 2020, 175 (2020). https://doi.org/10.1007/JHEP06(2020)175
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2020)175