Skip to main content
Log in

Higher derivative effects for 4d AdS gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Motivated by holography we explore higher derivative corrections to four-dimensional Anti-de Sitter (AdS) gravity. We point out that in such a theory the variational problem is generically not well-posed given only a boundary condition for the metric. However, when one evaluates the higher derivative terms perturbatively on a leading order Einstein solution, the equations of motion are always second order and therefore the variational problem indeed requires only a boundary condition for the metric. The equations of motion required to compute the spectrum around the corrected background are still generically higher order, with the additional boundary conditions being associated with new operators in the dual conformal field theory. We discuss which higher derivative curvature invariants are expected to arise in the four-dimensional action from a top-down perspective and compute the corrections to planar AdS black holes and to the spectrum around AdS in various cases. Requiring that the dual theory is unitary strongly constrains the higher derivative terms in the action, as the operators associated with the extra boundary conditions generically have complex conformal dimensions and non-positive norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  2. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. D. Anninos, S.A. Hartnoll and N. Iqbal, Holography and the Coleman-Mermin-Wagner theorem, Phys. Rev. D 82 (2010) 066008 [arXiv:1005.1973] [INSPIRE].

    ADS  Google Scholar 

  5. E. Witten, Chiral Symmetry, the 1/n Expansion and the SU(N ) Thirring Model, Nucl. Phys. B 145 (1978) 110 [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Benincasa and A. Buchel, Transport properties of N = 4 supersymmetric Yang-Mills theory at finite coupling, JHEP 01 (2006) 103 [hep-th/0510041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].

    ADS  Google Scholar 

  10. R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].

    ADS  Google Scholar 

  11. S. Nojiri and S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining deconfining phases in dual CFT, Phys. Lett. B 521 (2001) 87 [Erratum ibid. B 542 (2002) 301] [hep-th/0109122] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. M. Cvetič, S. Nojiri and S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Nojiri and S.D. Odintsov, (Anti-) de Sitter black holes in higher derivative gravity and dual conformal field theories, Phys. Rev. D 66 (2002) 044012 [hep-th/0204112] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. Y. Cho and I.P. Neupane, Anti-de Sitter black holes, thermal phase transition and holography in higher curvature gravity, Phys. Rev. D 66 (2002) 024044 [hep-th/0202140] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. I.P. Neupane, Black hole entropy in string generated gravity models, Phys. Rev. D 67 (2003) 061501 [hep-th/0212092] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. R. Gregory, S. Kanno and J. Soda, Holographic Superconductors with Higher Curvature Corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. C. Charmousis, Higher order gravity theories and their black hole solutions, Lect. Notes Phys. 769 (2009) 299 [arXiv:0805.0568] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear Viscosity from Gauss-Bonnet Gravity with a Dilaton Coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [INSPIRE].

    ADS  Google Scholar 

  19. C. Charmousis, B. Gouteraux and E. Kiritsis, Higher-derivative scalar-vector-tensor theories: black holes, Galileons, singularity cloaking and holography, JHEP 09 (2012) 011 [arXiv:1206.1499] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  26. N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].

    Article  ADS  Google Scholar 

  27. W. Li, W. Song and A. Strominger, Chiral Gravity in Three Dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. H. Lü and C. Pope, Critical Gravity in Four Dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [INSPIRE].

    Article  ADS  Google Scholar 

  29. H. Lü, Y. Pang and C. Pope, Conformal Gravity and Extensions of Critical Gravity, Phys. Rev. D 84 (2011) 064001 [arXiv:1106.4657] [INSPIRE].

    ADS  Google Scholar 

  30. K. Skenderis, M. Taylor and B.C. van Rees, Topologically Massive Gravity and the AdS/CFT Correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [INSPIRE].

    Article  ADS  Google Scholar 

  31. K. Skenderis, M. Taylor and B.C. van Rees, AdS boundary conditions and the Topologically Massive Gravity/CFT correspondence, arXiv:0909.5617 [INSPIRE].

  32. S. Deser, R. Jackiw and S. Templeton, Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett. 48 (1982) 975 [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. G. Gibbons and S. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. J.W. York, Conformatlly invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial value problem of general relativity, J. Math. Phys. 14 (1973) 456 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392 [INSPIRE].

    ADS  Google Scholar 

  38. S. Hawking and J. Luttrell, Higher derivatives in quantum cosmology. 1. The isotropic case, Nucl. Phys. B 247 (1984) 250 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. M. Madsen and J.D. Barrow, De Sitter ground states and boundary terms in generalized gravity, Nucl. Phys. B 323 (1989) 242 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. O. Hohm and E. Tonni, A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds, JHEP 04 (2010) 093 [arXiv:1001.3598] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. G. Compere, P. McFadden, K. Skenderis and M. Taylor, The Holographic fluid dual to vacuum Einstein gravity, JHEP 07 (2011) 050 [arXiv:1103.3022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. G. Compere, P. McFadden, K. Skenderis and M. Taylor, The relativistic fluid dual to vacuum Einstein gravity, JHEP 03 (2012) 076 [arXiv:1201.2678] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. P. Howe and D. Tsimpis, On higher order corrections in M-theory, JHEP 09 (2003) 038 [hep-th/0305129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Cederwall, U. Gran, B.E. Nilsson and D. Tsimpis, Supersymmetric corrections to eleven-dimensional supergravity, JHEP 05 (2005) 052 [hep-th/0409107] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. Y. Hyakutake and S. Ogushi, Higher derivative corrections to eleven dimensional supergravity via local supersymmetry, JHEP 02 (2006) 068 [hep-th/0601092] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. Y. Hyakutake, Toward the Determination of R 3 F 2 Terms in M-theory, Prog. Theor. Phys. 118 (2007) 109 [hep-th/0703154] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000)125 [hep-th/9812032] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. K. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  50. K. Stelle, Classical Gravity with Higher Derivatives, Gen. Rel. Grav. 9 (1978) 353 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. S. Nojiri and S.D. Odintsov, Finite gravitational action for higher derivative and stringy gravities, Phys. Rev. D 62 (2000) 064018 [hep-th/9911152] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. N. Johansson, A. Naseh and T. Zojer, Holographic two-point functions for 4d log-gravity, JHEP 09 (2012) 114 [arXiv:1205.5804] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].

  57. T.P. Sotiriou and V. Faraoni, f (R) Theories Of Gravity, Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. A. De Felice and S. Tsujikawa, f (R) theories, Living Rev. Rel. 13 (2010) 3 [arXiv:1002.4928] [INSPIRE].

    Google Scholar 

  59. S. Nojiri and S.D. Odintsov, Unified cosmic history in modified gravity: from F (R) theory to Lorentz non-invariant models, Phys. Rept. 505 (2011) 59 [arXiv:1011.0544] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. S. Deser and B. Tekin, Shortcuts to high symmetry solutions in gravitational theories, Class. Quant. Grav. 20 (2003) 4877 [gr-qc/0306114] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. S. de Haro, A. Sinkovics and K. Skenderis, On alpha-prime corrections to D-brane solutions, Phys. Rev. D 68 (2003) 066001 [hep-th/0302136] [INSPIRE].

    ADS  Google Scholar 

  62. J. Carminati and R. McLenaghan, Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space, J. Math. Phys. 32 (1991) 3135.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. A. Polishchuk, Massive symmetric tensor field on AdS, JHEP 07 (1999) 007 [hep-th/9905048] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on Massive 3D Gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  65. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  66. K. Skenderis and P.K. Townsend, Hidden supersymmetry of domain walls and cosmologies, Phys. Rev. Lett. 96 (2006) 191301 [hep-th/0602260] [INSPIRE].

    Article  ADS  Google Scholar 

  67. P. McFadden and K. Skenderis, Holography for Cosmology, Phys. Rev. D 81 (2010) 021301 [arXiv:0907.5542] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  68. P. McFadden and K. Skenderis, The Holographic Universe, J. Phys. Conf. Ser. 222 (2010) 012007 [arXiv:1001.2007] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marika Taylor.

Additional information

ArXiv ePrint: 1301.5205

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolic, J., Taylor, M. Higher derivative effects for 4d AdS gravity. J. High Energ. Phys. 2013, 96 (2013). https://doi.org/10.1007/JHEP06(2013)096

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)096

Keywords

Navigation