Skip to main content
Log in

Determining Higgs couplings with a model-independent analysis of hγγ

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Discovering a Higgs boson at the LHC will address a major outstanding issue in particle physics but will also raise many new questions. A concerted effort to determine the couplings of this new state to other Standard Model fields will be of critical importance. Precise knowledge of these couplings can serve as a powerful probe of new physics, and will be needed in attempts to accommodate such a new boson within specific models. In this paper, we present a method for constraining these couplings in a model-independent way, focusing primarily on an exclusive analysis of the γγ final state. We demonstrate the discriminating power of fully exclusive analyses, and discuss ways in which information can be shared between experimentalists and theorists in order to facilitate collaboration in the task of establishing the true origins of any new physics discovered at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Kaplan and H. Georgi, SU (2) × U (1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984)183 [INSPIRE].

    Article  ADS  Google Scholar 

  2. S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982)206 [INSPIRE].

    Article  ADS  Google Scholar 

  3. T. Banks, Constraints on SU (2) × U (1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984)125 [INSPIRE].

    ADS  Google Scholar 

  4. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984)187 [INSPIRE].

    Article  ADS  Google Scholar 

  5. H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs MASS, Phys. Lett. B 143 (1984) 152 [INSPIRE].

    Article  ADS  Google Scholar 

  6. H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].

    Article  ADS  Google Scholar 

  7. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].

    Article  ADS  Google Scholar 

  8. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J.F. Donoghue, C. Ramirez and G. Valencia, The Spectrum of QCD and Chiral Lagrangians of the Strong and Weak Interactions, Phys. Rev. D 39 (1989) 1947 [INSPIRE].

    ADS  Google Scholar 

  11. J.F. Donoghue and C. Ramirez, Symmetry breaking schemes and W W scattering, Phys. Lett. B 234 (1990) 361 [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Bagger et al., CERN LHC analysis of the strongly interacting W W system: Gold plated modes, Phys. Rev. D 52 (1995) 3878 [hep-ph/9504426] [INSPIRE].

    ADS  Google Scholar 

  13. E. Halyo, Technidilaton or Higgs?, Mod. Phys. Lett. A 8 (1993) 275 [INSPIRE].

    Article  ADS  Google Scholar 

  14. W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].

    Article  ADS  Google Scholar 

  15. L. Vecchi, Phenomenology of a light scalar: the dilaton, Phys. Rev. D 82 (2010) 076009 [arXiv:1002.1721] [INSPIRE].

    ADS  Google Scholar 

  16. B.A. Campbell, J. Ellis and K.A. Olive, Phenomenology and Cosmology of an Electroweak Pseudo-Dilaton and Electroweak Baryons, JHEP 03 (2012) 026 [arXiv:1111.4495] [INSPIRE].

    Article  ADS  Google Scholar 

  17. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  18. D. Zeppenfeld, R. Kinnunen, A. Nikitenko and E. Richter-Was, Measuring Higgs boson couplings at the CERN LHC, Phys. Rev. D 62 (2000) 013009 [hep-ph/0002036] [INSPIRE].

    ADS  Google Scholar 

  19. Precision Higgs Working Group of Snowmass 2001 collaboration, J. Conway, K. Desch, J. Gunion, S. Mrenna and D. Zeppenfeld, The Precision of Higgs boson measurements and their implications, eConf C010630 (2001) P1WG2 [hep-ph/0203206] [INSPIRE].

    Google Scholar 

  20. A. Belyaev and L. Reina, ppt \( \overline t \) H, Htau + tau : Toward a model independent determination of the Higgs boson couplings at the LHC, JHEP 08 (2002) 041 [hep-ph/0205270] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Dührssen, Prospects for the measurement of Higgs boson coupling parameters in the mass range from 110 – 190 GeV/c 2, ATL-PHYS-2003-030 (2003).

  22. M. Dührssen et al., Extracting Higgs boson couplings from CERN LHC data, Phys. Rev. D 70 (2004)113009 [hep-ph/0406323] [INSPIRE].

    ADS  Google Scholar 

  23. R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs Sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S. Bock et al., Measuring Hidden Higgs and Strongly-Interacting Higgs Scenarios, Phys. Lett. B 694 (2010) 44 [arXiv:1007.2645] [INSPIRE].

    Article  ADS  Google Scholar 

  25. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, arXiv:1202.3144 [INSPIRE].

  26. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  27. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, arXiv:1203.4254 [INSPIRE].

  28. M. Rauch, Determination of Higgs-boson couplings (SFitter), arXiv:1203.6826 [INSPIRE].

  29. M. Klute, R. Lafaye, T. Plehn, M. Rauch, D. Zerwas, M. Duhrssen, in preparation.

  30. J. Ellis and T. You, Global Analysis of Experimental Constraints on a Possible Higgs-Like Particle with Mass ∼125 GeV, arXiv:1204.0464 [INSPIRE].

  31. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    Article  ADS  Google Scholar 

  32. CMS collaboration, Search for the fermiophobic model Higgs boson decaying into two photons, CMS-PAS HIG-12-002.

  33. J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    Article  ADS  Google Scholar 

  34. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006)026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].

    Article  ADS  Google Scholar 

  36. P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 02 (2010) 037 [arXiv:0911.5299] [INSPIRE].

    Article  ADS  Google Scholar 

  37. CMS collaboration, Search for a Higgs boson decaying into two photons in the CMS detector, CMS-PAS HIG-11-030.

  38. G. D’Agostini, Bayesian reasoning in data analysis: A critical introduction, World Scientific, New Jersey U.S.A. (2003).

    Book  Google Scholar 

  39. ATLAS and CMS collaborations and LHC Higgs Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011, CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11 (2011).

  40. CMS collaboration, Search for a Higgs boson decaying into two photons in the CMS detector, CMS-PAS HIG-11-021.

  41. E. Gabrielli, B. Mele and M. Raidal, Has a fermiophobic Higgs boson been detected at the LHC ?, arXiv:1202.1796 [INSPIRE].

  42. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 710 (2012)91 [arXiv:1202.1489] [INSPIRE].

    Article  ADS  Google Scholar 

  43. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the decay channel H to ZZ to 4 leptons in pp collisions at \( \sqrt {s} = 7 \) TeV, arXiv:1202.1997 [INSPIRE].

  44. CMS collaboration, S. Chatrchyan et al., Search for neutral Higgs bosons decaying to tau pairs in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 713 (2012) 68 [arXiv:1202.4083] [INSPIRE].

    Article  ADS  Google Scholar 

  45. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  46. CMS collaboration, Combined results of searches for a Higgs boson in the context of the standard model and beyond-standard models, CMS-PAS HIG-12-008.

  47. R. Lafaye, T. Plehn and D. Zerwas, SFITTER: SUSY parameter analysis at LHC and LC, hep-ph/0404282 [INSPIRE].

  48. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Contino.

Additional information

ArXiv ePrint: 1204.4817

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azatov, A., Contino, R., Del Re, D. et al. Determining Higgs couplings with a model-independent analysis of hγγ . J. High Energ. Phys. 2012, 134 (2012). https://doi.org/10.1007/JHEP06(2012)134

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)134

Keywords

Navigation