Abstract
We study inclusive jet suppression and modifications in the quark-gluon plasma (QGP) with a transport-based model. The model includes vacuum-like parton shower evolution at high-virtuality, a linearized transport for jet-medium interactions, and a simple ansatz for the jet-induced hydrodynamic response of the medium. Model parameters are calibrated to nuclear modification factors for inclusive hadron \( {R}_{AA}^h \) and single inclusive jets \( {R}_{AA}^j \) with cone size R = 0.4 in 0–10% central Au-Au and Pb-Pb collisions measured at the RHIC and LHC. The calibrated model consistently describes the cone-size dependent \( {R}_{AA}^j \)(R), modifications to inclusive jet fragmentation functions and jet shape. We discuss the origin of these modifications by analyzing the medium-induced jet energy flow in this model and elucidate the interplay of hard parton evolution and jet-induced medium response. In particular, we demonstrate that the excess of soft hadrons at pT ∼ 2 GeV/c in jet fragmentation function and jet shape at large \( r=\sqrt{\Delta {\eta}^2+\Delta {\phi}^2} \) are consequences of both soft medium-induced gluon radiation and jet-induced medium excitation.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
D.A. Appel, Jets as a Probe of Quark-Gluon Plasmas, Phys. Rev. D 33 (1986) 717 [INSPIRE].
M. Gyulassy and M. Plumer, Jet Quenching in Dense Matter, Phys. Lett. B 243 (1990) 432 [INSPIRE].
X.-N. Wang and M. Gyulassy, Gluon shadowing and jet quenching in A + A collisions at \( \sqrt{s} \) = 200 GeV, Phys. Rev. Lett. 68 (1992) 1480 [INSPIRE].
G.-Y. Qin and X.-N. Wang, Jet quenching in high-energy heavy-ion collisions, Int. J. Mod. Phys. E 24 (2015) 1530014 [arXiv:1511.00790] [INSPIRE].
S.A. Bass, C. Gale, A. Majumder, C. Nonaka, G.-Y. Qin, T. Renk et al., Systematic Comparison of Jet Energy-Loss Schemes in a realistic hydrodynamic medium, Phys. Rev. C 79 (2009) 024901 [arXiv:0808.0908] [INSPIRE].
JET collaboration, Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C 90 (2014) 014909 [arXiv:1312.5003] [INSPIRE].
C. Andrés, N. Armesto, M. Luzum, C.A. Salgado and P. Zurita, Energy versus centrality dependence of the jet quenching parameter \( \hat{q} \) at RHIC and LHC: a new puzzle?, Eur. Phys. J. C 76 (2016) 475 [arXiv:1606.04837] [INSPIRE].
Y. Xu, J.E. Bernhard, S.A. Bass, M. Nahrgang and S. Cao, Data-driven analysis for the temperature and momentum dependence of the heavy-quark diffusion coefficient in relativistic heavy-ion collisions, Phys. Rev. C 97 (2018) 014907 [arXiv:1710.00807] [INSPIRE].
M. Xie, S.-Y. Wei, G.-Y. Qin and H.-Z. Zhang, Extracting jet transport coefficient via single hadron and dihadron productions in high-energy heavy-ion collisions, Eur. Phys. J. C 79 (2019) 589 [arXiv:1901.04155] [INSPIRE].
M. Connors, C. Nattrass, R. Reed and S. Salur, Jet measurements in heavy ion physics, Rev. Mod. Phys. 90 (2018) 025005 [arXiv:1705.01974] [INSPIRE].
Y.-T. Chien and I. Vitev, Towards the understanding of jet shapes and cross sections in heavy ion collisions using soft-collinear effective theory, JHEP 05 (2016) 023 [arXiv:1509.07257] [INSPIRE].
J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, Predictions for Boson-Jet Observables and Fragmentation Function Ratios from a Hybrid Strong/Weak Coupling Model for Jet Quenching, JHEP 03 (2016) 053 [arXiv:1508.00815] [INSPIRE].
Z.-B. Kang, F. Ringer and I. Vitev, Jet substructure using semi-inclusive jet functions in SCET, JHEP 11 (2016) 155 [arXiv:1606.07063] [INSPIRE].
N.-B. Chang and G.-Y. Qin, Full jet evolution in quark-gluon plasma and nuclear modification of jet production and jet shape in Pb+Pb collisions at 2.76ATeV at the CERN Large Hadron Collider, Phys. Rev. C 94 (2016) 024902 [arXiv:1603.01920] [INSPIRE].
JETSCAPE collaboration, Jet substructure modifications in a QGP from multi-scale description of jet evolution with JETSCAPE, PoS HardProbes2018 (2018) 099 [arXiv:1812.06366] [INSPIRE].
J. Casalderrey-Solana, Z. Hulcher, G. Milhano, D. Pablos and K. Rajagopal, Simultaneous description of hadron and jet suppression in heavy-ion collisions, Phys. Rev. C 99 (2019) 051901 [arXiv:1808.07386] [INSPIRE].
D. Pablos, Jet Suppression From a Small to Intermediate to Large Radius, Phys. Rev. Lett. 124 (2020) 052301 [arXiv:1907.12301] [INSPIRE].
P. Caucal, E. Iancu, A.H. Mueller and G. Soyez, Nuclear modification factors for jet fragmentation, JHEP 10 (2020) 204 [arXiv:2005.05852] [INSPIRE].
W. Chen, S. Cao, T. Luo, L.-G. Pang and X.-N. Wang, Medium modification of γ-jet fragmentation functions in Pb+Pb collisions at LHC, Phys. Lett. B 810 (2020) 135783 [arXiv:2005.09678] [INSPIRE].
R. Baier, Y.L. Dokshitzer, S. Peigne and D. Schiff, Induced gluon radiation in a QCD medium, Phys. Lett. B 345 (1995) 277 [hep-ph/9411409] [INSPIRE].
R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and p⊥ broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].
B.G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].
B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].
R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Medium induced radiative energy loss: Equivalence between the BDMPS and Zakharov formalisms, Nucl. Phys. B 531 (1998) 403 [hep-ph/9804212] [INSPIRE].
U.A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: Opacity expansion, Nucl. Phys. B 588 (2000) 303 [hep-ph/0005129] [INSPIRE].
M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].
P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].
M.H. Thoma, Collisional energy loss of high-energy jets in the quark gluon plasma, Phys. Lett. B 273 (1991) 128 [INSPIRE].
E. Braaten and M.H. Thoma, Energy loss of a heavy quark in the quark-gluon plasma, Phys. Rev. D 44 (1991) R2625 [INSPIRE].
M.G. Mustafa and M.H. Thoma, Quenching of hadron spectra due to the collisional energy loss of partons in the quark gluon plasma, Acta Phys. Hung. A 22 (2005) 93 [hep-ph/0311168] [INSPIRE].
M.G. Mustafa, Energy loss of charm quarks in the quark-gluon plasma: Collisional versus radiative, Phys. Rev. C 72 (2005) 014905 [hep-ph/0412402] [INSPIRE].
M. Djordjevic, Collisional energy loss in a finite size QCD matter, Phys. Rev. C 74 (2006) 064907 [nucl-th/0603066] [INSPIRE].
X.-N. Wang, Interference effect in elastic parton energy loss in a finite medium, Phys. Lett. B 650 (2007) 213 [nucl-th/0604040] [INSPIRE].
B. Schenke, M. Strickland, A. Dumitru, Y. Nara and C. Greiner, Transverse momentum diffusion and jet energy loss in non-Abelian plasmas, Phys. Rev. C 79 (2009) 034903 [arXiv:0810.1314] [INSPIRE].
G.-Y. Qin, J. Ruppert, C. Gale, S. Jeon, G.D. Moore and M.G. Mustafa, Radiative and collisional jet energy loss in the quark-gluon plasma at RHIC, Phys. Rev. Lett. 100 (2008) 072301 [arXiv:0710.0605] [INSPIRE].
H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].
E. Wang and X.-N. Wang, Jet tomography of dense and nuclear matter, Phys. Rev. Lett. 89 (2002) 162301 [hep-ph/0202105] [INSPIRE].
A. Idilbi and A. Majumder, Extending Soft-Collinear-Effective-Theory to describe hard jets in dense QCD media, Phys. Rev. D 80 (2009) 054022 [arXiv:0808.1087] [INSPIRE].
G. Ovanesyan and I. Vitev, An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung, JHEP 06 (2011) 080 [arXiv:1103.1074] [INSPIRE].
Y.-T. Chien, A. Emerman, Z.-B. Kang, G. Ovanesyan and I. Vitev, Jet Quenching from QCD Evolution, Phys. Rev. D 93 (2016) 074030 [arXiv:1509.02936] [INSPIRE].
S. Cao and A. Majumder, Nuclear modification of leading hadrons and jets within a virtuality ordered parton shower, Phys. Rev. C 101 (2020) 024903 [arXiv:1712.10055] [INSPIRE].
Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Anti-angular ordering of gluon radiation in QCD media, Phys. Rev. Lett. 106 (2011) 122002 [arXiv:1009.2965] [INSPIRE].
J. Casalderrey-Solana and E. Iancu, Interference effects in medium-induced gluon radiation, JHEP 08 (2011) 015 [arXiv:1105.1760] [INSPIRE].
Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Jets in QCD Media: From Color Coherence to Decoherence, Phys. Lett. B 707 (2012) 156 [arXiv:1102.4317] [INSPIRE].
N. Armesto, H. Ma, Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Coherence effects and broadening in medium-induced QCD radiation off a massive \( q\overline{q} \) antenna, JHEP 01 (2012) 109 [arXiv:1110.4343] [INSPIRE].
J. Casalderrey-Solana, Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, New picture of jet quenching dictated by color coherence, Phys. Lett. B 725 (2013) 357 [arXiv:1210.7765] [INSPIRE].
J. Casalderrey-Solana, D. Pablos and K. Tywoniuk, Two-gluon emission and interference in a thin QCD medium: insights into jet formation, JHEP 11 (2016) 174 [arXiv:1512.07561] [INSPIRE].
P.B. Arnold, G.D. Moore and L.G. Yaffe, Effective kinetic theory for high temperature gauge theories, JHEP 01 (2003) 030 [hep-ph/0209353] [INSPIRE].
P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 2. Beyond leading log, JHEP 05 (2003) 051 [hep-ph/0302165] [INSPIRE].
S. Jeon and G.D. Moore, Energy loss of leading partons in a thermal QCD medium, Phys. Rev. C 71 (2005) 034901 [hep-ph/0309332] [INSPIRE].
B. Schenke, C. Gale and S. Jeon, MARTINI: An Event generator for relativistic heavy-ion collisions, Phys. Rev. C 80 (2009) 054913 [arXiv:0909.2037] [INSPIRE].
J. Ghiglieri, G.D. Moore and D. Teaney, Jet-Medium Interactions at NLO in a Weakly-Coupled Quark-Gluon Plasma, JHEP 03 (2016) 095 [arXiv:1509.07773] [INSPIRE].
Y. He, T. Luo, X.-N. Wang and Y. Zhu, Linear Boltzmann Transport for Jet Propagation in the Quark-Gluon Plasma: Elastic Processes and Medium Recoil, Phys. Rev. C 91 (2015) 054908 [Erratum ibid. 97 (2018) 019902] [arXiv:1503.03313] [INSPIRE].
S. Cao, T. Luo, G.-Y. Qin and X.-N. Wang, Heavy and light flavor jet quenching at RHIC and LHC energies, Phys. Lett. B 777 (2018) 255 [arXiv:1703.00822] [INSPIRE].
Y. He, S. Cao, W. Chen, T. Luo, L.-G. Pang and X.-N. Wang, Interplaying mechanisms behind single inclusive jet suppression in heavy-ion collisions, Phys. Rev. C 99 (2019) 054911 [arXiv:1809.02525] [INSPIRE].
W. Ke, Y. Xu and S.A. Bass, Modified Boltzmann approach for modeling the splitting vertices induced by the hot QCD medium in the deep Landau-Pomeranchuk-Migdal region, Phys. Rev. C 100 (2019) 064911 [arXiv:1810.08177] [INSPIRE].
Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, The radiation pattern of a QCD antenna in a dilute medium, JHEP 04 (2012) 064 [arXiv:1112.5031] [INSPIRE].
M. Fickinger, G. Ovanesyan and I. Vitev, Angular distributions of higher order splitting functions in the vacuum and in dense QCD matter, JHEP 07 (2013) 059 [arXiv:1304.3497] [INSPIRE].
JETSCAPE collaboration, Multistage Monte-Carlo simulation of jet modification in a static medium, Phys. Rev. C 96 (2017) 024909 [arXiv:1705.00050] [INSPIRE].
W. Chen, S. Cao, T. Luo, L.-G. Pang and X.-N. Wang, Effects of jet-induced medium excitation in γ-hadron correlation in A+A collisions, Phys. Lett. B 777 (2018) 86 [arXiv:1704.03648] [INSPIRE].
P. Caucal, E. Iancu, A.H. Mueller and G. Soyez, Vacuum-like jet fragmentation in a dense QCD medium, Phys. Rev. Lett. 120 (2018) 232001 [arXiv:1801.09703] [INSPIRE].
A. Majumder, Incorporating Space-Time Within Medium-Modified Jet Event Generators, Phys. Rev. C 88 (2013) 014909 [arXiv:1301.5323] [INSPIRE].
X.-N. Wang and X.-f. Guo, Multiple parton scattering in nuclei: Parton energy loss, Nucl. Phys. A 696 (2001) 788 [hep-ph/0102230] [INSPIRE].
A. Majumder, Hard collinear gluon radiation and multiple scattering in a medium, Phys. Rev. D 85 (2012) 014023 [arXiv:0912.2987] [INSPIRE].
W.-t. Deng and X.-N. Wang, Multiple Parton Scattering in Nuclei: Modified DGLAP Evolution for Fragmentation Functions, Phys. Rev. C 81 (2010) 024902 [arXiv:0910.3403] [INSPIRE].
JETSCAPE collaboration, JETSCAPE v1.0 Quickstart Guide, Nucl. Phys. A 982 (2019) 615 [arXiv:1807.09615] [INSPIRE].
J.H. Putschke et al., The JETSCAPE framework, arXiv:1903.07706 [INSPIRE].
Jetscape collaboration, Bayesian extraction of \( \hat{q} \) with multi-stage jet evolution approach, PoS HardProbes2018 (2019) 048 [INSPIRE].
JETSCAPE collaboration, Constraints on jet quenching from a multi-stage energy-loss approach, in 10th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions: Hard Probes 2020, (2020) [arXiv:2009.02410] [INSPIRE].
P. Dorau, J.-B. Rose, D. Pablos and H. Elfner, Jet Quenching in the Hadron Gas: An Exploratory Study, Phys. Rev. C 101 (2020) 035208 [arXiv:1910.07027] [INSPIRE].
Y. Tachibana, N.-B. Chang and G.-Y. Qin, Full jet in quark-gluon plasma with hydrodynamic medium response, Phys. Rev. C 95 (2017) 044909 [arXiv:1701.07951] [INSPIRE].
J. Casalderrey-Solana, D. Gulhan, G. Milhano, D. Pablos and K. Rajagopal, Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model, JHEP 03 (2017) 135 [arXiv:1609.05842] [INSPIRE].
J. Casalderrey-Solana, J.G. Milhano, D. Pablos, K. Rajagopal and X. Yao, Jet Wake from Linearized Hydrodynamics, arXiv:2010.01140 [INSPIRE].
R. Kunnawalkam Elayavalli and K.C. Zapp, Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions, JHEP 07 (2017) 141 [arXiv:1707.01539] [INSPIRE].
T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
ATLAS Collaboration, ATLAS Pythia 8 tunes to 7 TeV data, CERN, Geneva, Switzerland (2014) ATL-PHYS-PUB-2014-021.
J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
K.J. Eskola, H. Paukkunen and C.A. Salgado, EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions, JHEP 04 (2009) 065 [arXiv:0902.4154] [INSPIRE].
J.D. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region, Phys. Rev. D 27 (1983) 140 [INSPIRE].
PHENIX collaboration, Transverse energy production and charged-particle multiplicity at midrapidity in various systems from \( \sqrt{s_{\mathrm{NN}}} \) = 7.7 to 200 GeV, Phys. Rev. C 93 (2016) 024901 [arXiv:1509.06727] [INSPIRE].
ALICE collaboration, Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett. 116 (2016) 222302 [arXiv:1512.06104] [INSPIRE].
P.B. Arnold and C. Dogan, QCD Splitting/Joining Functions at Finite Temperature in the Deep LPM Regime, Phys. Rev. D 78 (2008) 065008 [arXiv:0804.3359] [INSPIRE].
S. Caron-Huot and C. Gale, Finite-size effects on the radiative energy loss of a fast parton in hot and dense strongly interacting matter, Phys. Rev. C 82 (2010) 064902 [arXiv:1006.2379] [INSPIRE].
R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Radiative energy loss of high-energy partons traversing an expanding QCD plasma, Phys. Rev. C 58 (1998) 1706 [hep-ph/9803473] [INSPIRE].
F. Cooper and G. Frye, Comment on the Single Particle Distribution in the Hydrodynamic and Statistical Thermodynamic Models of Multiparticle Production, Phys. Rev. D 10 (1974) 186 [INSPIRE].
HotQCD collaboration, Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu and U. Heinz, Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94 (2016) 024907 [arXiv:1605.03954] [INSPIRE].
ATLAS collaboration, Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV with the ATLAS detector, Phys. Lett. B 790 (2019) 108 [arXiv:1805.05635] [INSPIRE].
ALICE collaboration, Measurements of inclusive jet spectra in pp and central Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. C 101 (2020) 034911 [arXiv:1909.09718] [INSPIRE].
STAR collaboration, Measurement of inclusive charged-particle jet production in Au + Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) =200 GeV, Phys. Rev. C 102 (2020) 054913 [arXiv:2006.00582] [INSPIRE].
CMS collaboration, First measurement of large area jet transverse momentum spectra in heavy-ion collisions, arXiv:2102.13080 [INSPIRE].
CMS collaboration, Charged-particle nuclear modification factors in PbPb and pPb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 04 (2017) 039 [arXiv:1611.01664] [INSPIRE].
CMS collaboration, Nuclear modification factor of D0 mesons in PbPb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Lett. B 782 (2018) 474 [arXiv:1708.04962] [INSPIRE].
PHENIX collaboration, Neutral pion production with respect to centrality and reaction plane in Au + Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. C 87 (2013) 034911 [arXiv:1208.2254] [INSPIRE].
R.J. Fries, B. Müller, C. Nonaka and S.A. Bass, Hadronization in heavy ion collisions: Recombination and fragmentation of partons, Phys. Rev. Lett. 90 (2003) 202303 [nucl-th/0301087] [INSPIRE].
ALICE collaboration, Measurement of D0, D+, D*+ and \( {D}_s^{+} \) production in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 10 (2018) 174 [arXiv:1804.09083] [INSPIRE].
J.-P. Blaizot, E. Iancu and Y. Mehtar-Tani, Medium-induced QCD cascade: democratic branching and wave turbulence, Phys. Rev. Lett. 111 (2013) 052001 [arXiv:1301.6102] [INSPIRE].
J.-P. Blaizot, Y. Mehtar-Tani and M.A.C. Torres, Angular structure of the in-medium QCD cascade, Phys. Rev. Lett. 114 (2015) 222002 [arXiv:1407.0326] [INSPIRE].
L. Fister and E. Iancu, Medium-induced jet evolution: wave turbulence and energy loss, JHEP 03 (2015) 082 [arXiv:1409.2010] [INSPIRE].
J.-P. Blaizot, L. Fister and Y. Mehtar-Tani, Angular distribution of medium-induced QCD cascades, Nucl. Phys. A 940 (2015) 67 [arXiv:1409.6202] [INSPIRE].
J.-P. Blaizot and Y. Mehtar-Tani, Energy flow along the medium-induced parton cascade, Annals Phys. 368 (2016) 148 [arXiv:1501.03443] [INSPIRE].
S. Schlichting and I. Soudi, Fragmentation and equilibration of jets in a QCD plasma, arXiv:2008.04928 [INSPIRE].
T. Dai, J.-F. Paquet, D. Teaney and S.A. Bass, Parton energy loss in a hard-soft factorized approach, arXiv:2012.03441 [INSPIRE].
W. Ke, Partonic transport model application to heavy flavor, Phd thesis, Duke University (2019) [arXiv:2001.02766] [INSPIRE].
M. Spousta and B. Cole, Interpreting single jet measurements in Pb+Pb collisions at the LHC, Eur. Phys. J. C 76 (2016) 50 [arXiv:1504.05169] [INSPIRE].
ATLAS collaboration, Measurement of jet fragmentation in Pb+Pb and pp collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV with the ATLAS detector, Phys. Rev. C 98 (2018) 024908 [arXiv:1805.05424] [INSPIRE].
CMS collaboration, Jet properties in PbPb and pp collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 05 (2018) 006 [arXiv:1803.00042] [INSPIRE].
ATLAS collaboration, Measurement of angular and momentum distributions of charged particles within and around jets in Pb+Pb and pp collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV with the ATLAS detector, Phys. Rev. C 100 (2019) 064901 [Erratum ibid. 101 (2020) 059903] [arXiv:1908.05264] [INSPIRE].
S. Cao et al., Determining the jet transport coefficient \( \hat{q} \) from inclusive hadron suppression measurements using Bayesian parameter estimation, arXiv:2102.11337 [INSPIRE].
J.E. Bernhard, Bayesian parameter estimation for relativistic heavy-ion collisions, PhD thesis, Duke University (2018). arXiv:1804.06469 [INSPIRE].
J.S. Moreland, J.E. Bernhard and S.A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions, Phys. Rev. C 92 (2015) 011901 [arXiv:1412.4708] [INSPIRE].
W. Broniowski, W. Florkowski, M. Chojnacki and A. Kisiel, Free-streaming approximation in early dynamics of relativistic heavy-ion collisions, Phys. Rev. C 80 (2009) 034902 [arXiv:0812.3393] [INSPIRE].
H. Song and U.W. Heinz, Causal viscous hydrodynamics in 2 + 1 dimensions for relativistic heavy-ion collisions, Phys. Rev. C 77 (2008) 064901 [arXiv:0712.3715] [INSPIRE].
C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, The iEBE-VISHNU code package for relativistic heavy-ion collisions, Comput. Phys. Commun. 199 (2016) 61 [arXiv:1409.8164] [INSPIRE].
S. Stojku, B. Ilic, M. Djordjevic and M. Djordjevic, Extracting the temperature dependence in high-p⊥ particle energy loss, Phys. Rev. C 103 (2021) 024908 [arXiv:2007.07851] [INSPIRE].
R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2019) https://www.r-project.org/.
R. Carnell, LHS: Latin Hypercube Samples, R package version 1.0.1. (2019) http://rmirror.lau.edu.lb/web/packages/lhs/index.html.
F. Pedregosa et al., Scikit-learn: Machine Learning in Python, J. Machine Learning Res. 12 (2011) 2825 [arXiv:1201.0490] [INSPIRE].
D. Foreman-Mackey, D.W. Hogg, D. Lang and J. Goodman, emcee: The MCMC Hammer, Publ. Astron. Soc. Pac. 125 (2013) 306 [arXiv:1202.3665] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2010.13680
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Ke, W., Wang, XN. QGP modification to single inclusive jets in a calibrated transport model. J. High Energ. Phys. 2021, 41 (2021). https://doi.org/10.1007/JHEP05(2021)041
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2021)041