Abstract
Anisotropic flow coefficients, vn, non-linear flow mode coefficients, χn,mk, and correlations among different symmetry planes, ρn,mk are measured in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV. Results obtained with multi-particle correlations are reported for the transverse momentum interval 0.2 < pT < 5.0 GeV/c within the pseudorapidity interval 0.4 < |η| < 0.8 as a function of collision centrality. The vn coefficients and χn,mk and ρn,mk are presented up to the ninth and seventh harmonic order, respectively. Calculations suggest that the correlations measured in different symmetry planes and the non-linear flow mode coefficients are dependent on the shear and bulk viscosity to entropy ratios of the medium created in heavy-ion collisions. The comparison between these measurements and those at lower energies and calculations from hydrodynamic models places strong constraints on the initial conditions and transport properties of the system.

Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev. D 46 (1992) 229 [INSPIRE].
S.A. Voloshin, A.M. Poskanzer and R. Snellings, Collective phenomena in non-central nuclear collisions, Landolt-Bornstein 23 (2010) 293 [arXiv:0809.2949] [INSPIRE].
S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions, Z. Phys. C 70 (1996) 665 [hep-ph/9407282] [INSPIRE].
A.M. Poskanzer and S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions, Phys. Rev. C 58 (1998) 1671 [nucl-ex/9805001] [INSPIRE].
B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81 (2010) 054905 [Erratum ibid. C 82 (2010) 039903] [arXiv:1003.0194] [INSPIRE].
ALICE collaboration, Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. Lett. 107 (2011) 032301 [arXiv:1105.3865] [INSPIRE].
ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].
ALICE collaboration, Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Lett. B 719 (2013) 18 [arXiv:1205.5761] [INSPIRE].
ALICE collaboration, Elliptic flow of identified hadrons in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, JHEP 06 (2015) 190 [arXiv:1405.4632] [INSPIRE].
ALICE collaboration, Higher harmonic flow coefficients of identified hadrons in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, JHEP 09 (2016) 164 [arXiv:1606.06057] [INSPIRE].
ALICE collaboration, Anisotropic flow of charged particles in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett. 116 (2016) 132302 [arXiv:1602.01119] [INSPIRE].
ALICE collaboration, Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC, JHEP 09 (2017) 032 [arXiv:1707.05690] [INSPIRE].
ALICE collaboration, Anisotropic flow of identified particles in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 09 (2018) 006 [arXiv:1805.04390] [INSPIRE].
D.A. Teaney, Viscous Hydrodynamics and the Quark Gluon Plasma, in Quark-gluon plasma 4, R.C. Hwa and X.-N. Wang eds., pp. 207–266, (2010) [DOI] [arXiv:0905.2433] [INSPIRE].
D. Molnar and M. Gyulassy, Saturation of elliptic flow and the transport opacity of the gluon plasma at RHIC, Nucl. Phys. A 697 (2002) 495 [Erratum ibid. A 703 (2002) 893] [nucl-th/0104073] [INSPIRE].
D. Teaney, The Effects of viscosity on spectra, elliptic flow and HBT radii, Phys. Rev. C 68 (2003) 034913 [nucl-th/0301099] [INSPIRE].
R.A. Lacey et al., Has the QCD Critical Point been Signaled by Observations at RHIC?, Phys. Rev. Lett. 98 (2007) 092301 [nucl-ex/0609025] [INSPIRE].
H.-J. Drescher, A. Dumitru, C. Gombeaud and J.-Y. Ollitrault, The Centrality dependence of elliptic flow, the hydrodynamic limit and the viscosity of hot QCD, Phys. Rev. C 76 (2007) 024905 [arXiv:0704.3553] [INSPIRE].
Z. Xu, C. Greiner and H. Stocker, PQCD calculations of elliptic flow and shear viscosity at RHIC, Phys. Rev. Lett. 101 (2008) 082302 [arXiv:0711.0961] [INSPIRE].
D. Molnar and P. Huovinen, Dissipative effects from transport and viscous hydrodynamics, J. Phys. G 35 (2008) 104125 [arXiv:0806.1367] [INSPIRE].
U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 [arXiv:1301.2826] [INSPIRE].
H. Song, Y. Zhou and K. Gajdosova, Collective flow and hydrodynamics in large and small systems at the LHC, Nucl. Sci. Tech. 28 (2017) 99 [arXiv:1703.00670] [INSPIRE].
P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].
D. Teaney and L. Yan, Triangularity and Dipole Asymmetry in Heavy Ion Collisions, Phys. Rev. C 83 (2011) 064904 [arXiv:1010.1876] [INSPIRE].
H. Niemi, K.J. Eskola and R. Paatelainen, Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions, Phys. Rev. C 93 (2016) 024907 [arXiv:1505.02677] [INSPIRE].
H. Niemi, G.S. Denicol, H. Holopainen and P. Huovinen, Event-by-event distributions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions, Phys. Rev. C 87 (2013) 054901 [arXiv:1212.1008] [INSPIRE].
STAR collaboration, Identified particle elliptic flow in Au + Au collisions at \( \sqrt{s_{NN}} \) = 130 GeV, Phys. Rev. Lett. 87 (2001) 182301 [nucl-ex/0107003] [INSPIRE].
STAR collaboration, Elliptic flow from two and four particle correlations in Au+Au collisions at \( \sqrt{s_{NN}} \) = 130 GeV, Phys. Rev. C 66 (2002) 034904 [nucl-ex/0206001] [INSPIRE].
PHENIX collaboration, Elliptic flow of identified hadrons in Au+Au collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett. 91 (2003) 182301 [nucl-ex/0305013] [INSPIRE].
STAR collaboration, Azimuthal anisotropy at RHIC: The First and fourth harmonics, Phys. Rev. Lett. 92 (2004) 062301 [nucl-ex/0310029] [INSPIRE].
STAR collaboration, Azimuthal anisotropy in U+U and Au+Au collisions at RHIC, Phys. Rev. Lett. 115 (2015) 222301 [arXiv:1505.07812] [INSPIRE].
PHOBOS collaboration, Event-by-Event Fluctuations of Azimuthal Particle Anisotropy in Au + Au Collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett. 104 (2010) 142301 [nucl-ex/0702036] [INSPIRE].
T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey and Y. Nara, Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions, Phys. Lett. B 636 (2006) 299 [nucl-th/0511046] [INSPIRE].
P. Romatschke and U. Romatschke, Viscosity Information from Relativistic Nuclear Collisions: How Perfect is the Fluid Observed at RHIC?, Phys. Rev. Lett. 99 (2007) 172301 [arXiv:0706.1522] [INSPIRE].
A.K. Chaudhuri, Saturation of elliptic flow and shear viscosity, arXiv:0708.1252 [INSPIRE].
H. Song, S.A. Bass, U. Heinz, T. Hirano and C. Shen, 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid, Phys. Rev. Lett. 106 (2011) 192301 [Erratum ibid. 109 (2012) 139904] [arXiv:1011.2783] [INSPIRE].
M. Luzum and J.-Y. Ollitrault, Extracting the shear viscosity of the quark-gluon plasma from flow in ultra-central heavy-ion collisions, Nucl. Phys. A904–905 (2013) 377c [arXiv:1210.6010] [INSPIRE].
C. Shen et al., The QGP shear viscosity: Elusive goal or just around the corner?, J. Phys. G 38 (2011) 124045 [arXiv:1106.6350] [INSPIRE].
ALICE collaboration, Correlated event-by-event fluctuations of flow harmonics in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Rev. Lett. 117 (2016) 182301 [arXiv:1604.07663] [INSPIRE].
ALICE collaboration, Systematic studies of correlations between different order flow harmonics in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Rev. C 97 (2018) 024906 [arXiv:1709.01127] [INSPIRE].
P. Bozek, Flow and interferometry in 3+1 dimensional viscous hydrodynamics, Phys. Rev. C 85 (2012) 034901 [arXiv:1110.6742] [INSPIRE].
J.-B. Rose et al., Extracting the bulk viscosity of the quark-gluon plasma, Nucl. Phys. A 931 (2014) 926 [arXiv:1408.0024] [INSPIRE].
S. Ryu et al., Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions, Phys. Rev. Lett. 115 (2015) 132301 [arXiv:1502.01675] [INSPIRE].
S. Ryu et al., Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider, Phys. Rev. C 97 (2018) 034910 [arXiv:1704.04216] [INSPIRE].
J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu and U. Heinz, Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94 (2016) 024907 [arXiv:1605.03954] [INSPIRE].
A. Dubla, S. Masciocchi, J.M. Pawlowski, B. Schenke, C. Shen and J. Stachel, Towards QCD-assisted hydrodynamics for heavy-ion collision phenomenology, Nucl. Phys. A 979 (2018) 251 [arXiv:1805.02985] [INSPIRE].
J.E. Bernhard, J.S. Moreland and S.A. Bass, Bayesian estimation of the specific shear and bulk viscosity of quark-gluon plasma, Nature Phys. 15 (2019) 1113.
B.H. Alver, C. Gombeaud, M. Luzum and J.-Y. Ollitrault, Triangular flow in hydrodynamics and transport theory, Phys. Rev. C 82 (2010) 034913 [arXiv:1007.5469] [INSPIRE].
ATLAS collaboration, Measurement of the azimuthal anisotropy of charged particles produced in \( \sqrt{s_{NN}} \) = 5.02 TeV Pb+Pb collisions with the ATLAS detector, Eur. Phys. J. C 78 (2018) 997 [arXiv:1808.03951] [INSPIRE].
F.G. Gardim, F. Grassi, M. Luzum and J.-Y. Ollitrault, Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions, Phys. Rev. C 85 (2012) 024908 [arXiv:1111.6538] [INSPIRE].
F.G. Gardim, J. Noronha-Hostler, M. Luzum and F. Grassi, Effects of viscosity on the mapping of initial to final state in heavy ion collisions, Phys. Rev. C 91 (2015) 034902 [arXiv:1411.2574] [INSPIRE].
D. Teaney and L. Yan, Event-plane correlations and hydrodynamic simulations of heavy ion collisions, Phys. Rev. C 90 (2014) 024902 [arXiv:1312.3689] [INSPIRE].
ALICE collaboration, Linear and non-linear flow modes in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Lett. B 773 (2017) 68 [arXiv:1705.04377] [INSPIRE].
M.L. Miller, K. Reygers, S.J. Sanders and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205 [nucl-ex/0701025] [INSPIRE].
Z. Qiu and U.W. Heinz, Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs, Phys. Rev. C 84 (2011) 024911 [arXiv:1104.0650] [INSPIRE].
H.-J. Drescher and Y. Nara, Eccentricity fluctuations from the color glass condensate at RHIC and LHC, Phys. Rev. C 76 (2007) 041903 [arXiv:0707.0249] [INSPIRE].
S. McDonald, C. Shen, F. Fillion-Gourdeau, S. Jeon and C. Gale, Hydrodynamic predictions for Pb+Pb collisions at 5.02 TeV, Phys. Rev. C 95 (2017) 064913 [arXiv:1609.02958] [INSPIRE].
ALICE collaboration, Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 and 2.76 TeV, JHEP 07 (2018) 103 [arXiv:1804.02944] [INSPIRE].
L. Yan and J.-Y. Ollitrault, ν4, ν5, ν6, ν7: nonlinear hydrodynamic response versus LHC data, Phys. Lett. B 744 (2015) 82 [arXiv:1502.02502] [INSPIRE].
D. Teaney and L. Yan, Non linearities in the harmonic spectrum of heavy ion collisions with ideal and viscous hydrodynamics, Phys. Rev. C 86 (2012) 044908 [arXiv:1206.1905] [INSPIRE].
J. Jia and S. Mohapatra, A Method for studying initial geometry fluctuations via event plane correlations in heavy ion collisions, Eur. Phys. J. C 73 (2013) 2510 [arXiv:1203.5095] [INSPIRE].
M. Luzum, Flow fluctuations and long-range correlations: elliptic flow and beyond, J. Phys. G 38 (2011) 124026 [arXiv:1107.0592] [INSPIRE].
Z. Qiu and U. Heinz, Hydrodynamic event-plane correlations in Pb+Pb collisions at \( \sqrt{s} \) = 2.76ATeV, Phys. Lett. B 717 (2012) 261 [arXiv:1208.1200] [INSPIRE].
ATLAS collaboration, Measurement of event-plane correlations in \( \sqrt{s_{NN}} \) = 2.76 TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 90 (2014) 024905 [arXiv:1403.0489] [INSPIRE].
CMS collaboration, Measurement of Higher-Order Harmonic Azimuthal Anisotropy in PbPb Collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. C 89 (2014) 044906 [arXiv:1310.8651] [INSPIRE].
M. Luzum and J.-Y. Ollitrault, Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions, Phys. Rev. C 87 (2013) 044907 [arXiv:1209.2323] [INSPIRE].
ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002 [INSPIRE].
ALICE collaboration, Performance of the ALICE Experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044 [arXiv:1402.4476] [INSPIRE].
ALICE collaboration, ALICE: Physics performance report, volume I, J. Phys. G 30 (2004) 1517 [INSPIRE].
ALICE collaboration, ALICE: Physics performance report, volume II, J. Phys. G 32 (2006) 1295 [INSPIRE].
ALICE collaboration, Performance of the ALICE VZERO system, 2013 JINST 8 P10016 [arXiv:1306.3130] [INSPIRE].
ALICE collaboration, Alignment of the ALICE Inner Tracking System with cosmic-ray tracks, 2010 JINST 5 P03003 [arXiv:1001.0502] [INSPIRE].
ALICE collaboration, Performance of the ALICE Time-Of-Flight detector at the LHC, 2019 JINST 14 C06023 [arXiv:1806.03825] [INSPIRE].
ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].
J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 316 [arXiv:1001.1950] [INSPIRE].
ALICE collaboration, The ALICE definition of primary particles, ALICE-PUBLIC-2017-005.
X.-N. Wang and M. Gyulassy, HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions, Phys. Rev. D 44 (1991) 3501 [INSPIRE].
M. Gyulassy and X.-N. Wang, HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions, Comput. Phys. Commun. 83 (1994) 307 [nucl-th/9502021] [INSPIRE].
R. Brun et al., GEANT Detector Description and Simulation Tool, DOI [INSPIRE].
A. Bilandzic, C.H. Christensen, K. Gulbrandsen, A. Hansen and Y. Zhou, Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations, Phys. Rev. C 89 (2014) 064904 [arXiv:1312.3572] [INSPIRE].
H. Niemi, K.J. Eskola, R. Paatelainen and K. Tuominen, Predictions for 5.023 TeV Pb + Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 93 (2016) 014912 [arXiv:1511.04296] [INSPIRE].
W. Zhao, H.-j. Xu and H. Song, Collective flow in 2.76 and 5.02 A TeV Pb+Pb collisions, Eur. Phys. J. C 77 (2017) 645 [arXiv:1703.10792] [INSPIRE].
C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, The iEBE-VISHNU code package for relativistic heavy-ion collisions, Comput. Phys. Commun. 199 (2016) 61 [arXiv:1409.8164] [INSPIRE].
R.S. Bhalerao, A. Jaiswal and S. Pal, Collective flow in event-by-event partonic transport plus hydrodynamics hybrid approach, Phys. Rev. C 92 (2015) 014903 [arXiv:1503.03862] [INSPIRE].
L. Pang, Q. Wang and X.-N. Wang, Effects of initial flow velocity fluctuation in event-by-event (3+1)D hydrodynamics, Phys. Rev. C 86 (2012) 024911 [arXiv:1205.5019] [INSPIRE].
H.-j. Xu, Z. Li and H. Song, High-order flow harmonics of identified hadrons in 2.76A TeV Pb + Pb collisions, Phys. Rev. C 93 (2016) 064905 [arXiv:1602.02029] [INSPIRE].
J.S. Moreland, J.E. Bernhard and S.A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions, Phys. Rev. C 92 (2015) 011901 [arXiv:1412.4708] [INSPIRE].
B. Schenke, S. Jeon and C. Gale, Elliptic and triangular flow in event-by-event (3+1)D viscous hydrodynamics, Phys. Rev. Lett. 106 (2011) 042301 [arXiv:1009.3244] [INSPIRE].
B. Schenke, P. Tribedy and R. Venugopalan, Fluctuating Glasma initial conditions and flow in heavy ion collisions, Phys. Rev. Lett. 108 (2012) 252301 [arXiv:1202.6646] [INSPIRE].
Z. Qiu, C. Shen and U. Heinz, Hydrodynamic elliptic and triangular flow in Pb-Pb collisions at \( \sqrt{s} \) = 2.76ATeV, Phys. Lett. B 707 (2012) 151 [arXiv:1110.3033] [INSPIRE].
C. Shen, U. Heinz, P. Huovinen and H. Song, Systematic parameter study of hadron spectra and elliptic flow from viscous hydrodynamic simulations of Au+Au collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. C 82 (2010) 054904 [arXiv:1010.1856] [INSPIRE].
C. Shen, U. Heinz, P. Huovinen and H. Song, Radial and elliptic flow in Pb+Pb collisions at the Large Hadron Collider from viscous hydrodynamic, Phys. Rev. C 84 (2011) 044903 [arXiv:1105.3226] [INSPIRE].
G.S. Denicol, T. Kodama, T. Koide and P. Mota, Effect of bulk viscosity on Elliptic Flow near QCD phase transition, Phys. Rev. C 80 (2009) 064901 [arXiv:0903.3595] [INSPIRE].
F. Karsch, D. Kharzeev and K. Tuchin, Universal properties of bulk viscosity near the QCD phase transition, Phys. Lett. B 663 (2008) 217 [arXiv:0711.0914] [INSPIRE].
J. Noronha-Hostler, J. Noronha and C. Greiner, Transport Coefficients of Hadronic Matter near T(c), Phys. Rev. Lett. 103 (2009) 172302 [arXiv:0811.1571] [INSPIRE].
E. Molnar, H. Niemi and D.H. Rischke, Numerical tests of causal relativistic dissipative fluid dynamics, Eur. Phys. J. C 65 (2010) 615 [arXiv:0907.2583] [INSPIRE].
E. Shuryak, The sounds of the Little and Big Bangs, Universe 3 (2017) 75 [arXiv:1710.03776] [INSPIRE].
P. Staig and E. Shuryak, The Fate of the Initial State Fluctuations in Heavy Ion Collisions. III The Second Act of Hydrodynamics, Phys. Rev. C 84 (2011) 044912 [arXiv:1105.0676] [INSPIRE].
R.A. Lacey et al., Is anisotropic flow really acoustic?, arXiv:1301.0165 [INSPIRE].
J. Qian, U.W. Heinz and J. Liu, Mode-coupling effects in anisotropic flow in heavy-ion collisions, Phys. Rev. C 93 (2016) 064901 [arXiv:1602.02813] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Consortia
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2002.00633
Deceased (S. Pochybova)
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
The ALICE collaboration., Acharya, S., Adamová, D. et al. Higher harmonic non-linear flow modes of charged hadrons in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV. J. High Energ. Phys. 2020, 85 (2020). https://doi.org/10.1007/JHEP05(2020)085
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2020)085