Skip to main content
Log in

BKM Lie superalgebras from dyon spectra in Z N CHL orbifolds for composite N

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We show that the generating function of electrically charged \( \frac{1}{2} \) -BPS states in \( \mathcal{N} = 4 \) supersymmetric CHL \( {\mathbb{Z}_N} \)-orbifolds of the heterotic string on T 6 are given by multiplicative η-products. The η-products are determined by the cycle shape of the corresponding symplectic involution in the dual type II picture. This enables us to complete the construction of the genus-two Siegel modular forms due to David, Jatkar and Sen [arXiv:hep-th/0609109] for \( {\mathbb{Z}_N} \)-orbifolds when N is non-prime. We study the \( {\mathbb{Z}_4} \) CHL orbifold in detail and show that the associated Siegel modular forms, \( {\Phi_3}\left( \mathbb{Z} \right) \) and \( {\widetilde\Phi_3}\left( \mathbb{Z} \right) \), are given by the square of the product of three even genus-two theta constants. Extending work by us as well as Cheng and Dabholkar, we show that the ‘square roots’ of the two Siegel modular forms appear as the denominator formulae of two distinct Borcherds-Kac-Moody (BKM) Lie superalgebras. The BKM Lie superalgebra associated with the generating function of \( \frac{1}{4} \) -BPS states, i.e., \( {\widetilde\Phi_3}\left( \mathbb{Z} \right) \) has a parabolic root system with a lightlike Weyl vector and the walls of its fundamental Weyl chamber are mapped to the walls of marginal stability of the \( \frac{1}{4} \) -BPS states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Counting dyons in N = 4 string theory, Nucl. Phys. B 484 (1997) 543 [hep-th/9607026] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. D.P. Jatkar and A. Sen, Dyon spectrum in CHL models, JHEP 04 (2006) 018 [hep-th/0510147] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. M.C.N. Cheng and E.P. Verlinde, Wall crossing, discrete attractor flow and borcherds algebra, arXiv:0806.2337 [SPIRES].

  4. S. Govindarajan and K. Gopala Krishna, Generalized Kac-Moody algebras from CHL dyons, JHEP 04 (2009) 032 [arXiv:0807.4451] [SPIRES].

    Article  ADS  Google Scholar 

  5. M.C.N. Cheng and A. Dabholkar, Borcherds-Kac-Moody symmetry of N = 4 dyons, arXiv:0809.4258 [SPIRES].

  6. A. Sen, Walls of marginal stability and dyon spectrum in N = 4 supersymmetric string theories, JHEP 05 (2007) 039 [hep-th/0702141] [SPIRES].

    Article  ADS  Google Scholar 

  7. S. Chaudhuri and D.A. Lowe, Type IIA heterotic duals with maximal supersymmetry, Nucl. Phys. B 459 (1996) 113 [hep-th/9508144] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. J.R. David, D.P. Jatkar and A. Sen, Dyon spectrum in generic N = 4 supersymmetric Z(N) orbifolds, JHEP 01 (2007) 016 [hep-th/0609109] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Sen, Black holes, elementary strings and holomorphic anomaly, JHEP 07 (2005) 063 [hep-th/0502126] [SPIRES].

    Article  ADS  Google Scholar 

  10. A. Sen, A twist in the dyon partition function, arXiv:0911.1563 [SPIRES].

  11. J.R. David and A. Sen, CHL dyons and statistical entropy function from D1 − D5 system, JHEP 11 (2006) 072 [hep-th/0605210] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. V. Gritsenko and F. Clery, The Siegel modular forms of genus 2 with the simplest divisor, arXiv:0812.3962.

  13. A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  14. S. Banerjee and A. Sen, Duality orbits, dyon spectrum and gauge theory limit of heterotic string theory on T 6, JHEP 03 (2008) 022 [arXiv:0712.0043] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Banerjee and A. Sen, S-duality action on discrete T-duality invariants, JHEP 04 (2008) 012 [arXiv:0801.0149] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Dabholkar, D. Gaiotto and S. Nampuri, Comments on the spectrum of CHL dyons, JHEP 01 (2008) 023 [hep-th/0702150] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. J.C. Breckenridge et al., Macroscopic and microscopic entropy of near-extremal spinning black holes, Phys. Lett. B 381 (1996) 423 [hep-th/9603078] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. D. Gaiotto, A. Strominger and X. Yin, New connections between 4D and 5D black holes, JHEP 02 (2006) 024 [hep-th/0503217] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197 [hep-th/9608096] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. A. Sen, Black holes and the spectrum of half-BPS states in N = 4 supersymmetric string theory, Adv. Theor. Math. Phys. 9 (2005) 527 [hep-th/0504005] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  21. A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Precision counting of small black holes, JHEP 10 (2005) 096 [hep-th/0507014] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Exact and asymptotic degeneracies of small black holes, JHEP 08 (2005) 021 [hep-th/0502157] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Garbagnati and A. Sarti, Elliptic fibrations and symplectic automorphisms on K3 surfaces, Comm. in Algebra 37 (2009) 3601 [arXiv:0801.3992].

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math. 94 (1988) 183.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. J.H. Conway and S.P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979) 308.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Dummit, H. Kisilevsky and J. McKay, Multiplicative products of η-functions, in Finite groups — coming of age, Montreal, Quebec, Contemp. Math. 45 (1982) 89, Amer. Math. Soc., Providence, RI (1985).

    MathSciNet  Google Scholar 

  27. G. Mason, M 24 and certain automorphic forms, in Finite groups — coming of age, Montreal, Quebec, Contemp. Math. 45 (1982) 223, Amer. Math. Soc., Providence, RI (1985).

    Google Scholar 

  28. Y. Martin, Multiplicative η-quotients, Trans. Amer. Math. Soc. 348 (1996) 4825.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Aoki and T. Ibukiyama, Simple graded rings of Siegel modular forms, differential operators and Borcherds products, Internat. J. Math. 16 (2005) 249.

    Article  MATH  MathSciNet  Google Scholar 

  30. J.R. David, D.P. Jatkar and A. Sen, Product representation of dyon partition function in CHL models, JHEP 06 (2006) 064 [hep-th/0602254] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Dabholkar and S. Nampuri, Spectrum of dyons and black holes in CHL orbifolds using borcherds lift, JHEP 11 (2007) 077 [hep-th/0603066] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. J.R. David, D.P. Jatkar and A. Sen, Dyon spectrum in N = 4 supersymmetric type-II string theories, JHEP 11 (2006) 073 [hep-th/0607155] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. V.A. Gritsenko and V.V. Nikulin, Siegel automorphic form corrections of some Lorentzian Kac-Moody Lie algebras, Amer. J. Math. 119 (1997) 181 [alg-geom/9504006].

    Article  MATH  MathSciNet  Google Scholar 

  34. R.E. Borcherds, The monster Lie algebra, Adv. Math. 83 (1990) 30.

    Article  MATH  MathSciNet  Google Scholar 

  35. U. Ray, Automorphic forms and Lie superalgebras, Algebras and Applications. Vol.5, Springer, Dordrecht (2006).

    Google Scholar 

  36. A. Mukherjee, S. Mukhi and R. Nigam, Dyon death eaters, JHEP 10 (2007) 037 [arXiv:0707.3035] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. A. Mukherjee, S. Mukhi and R. Nigam, Kinematical analogy for marginal dyon decay, Mod. Phys. Lett. A 24 (2009) 1507 [arXiv:0710.4533] [SPIRES].

    ADS  Google Scholar 

  38. V.A. Gritsenko and V.V. Nikulin, On the classification of Lorentzian Kac-Moody algebras, Uspekhi Mat. Nauk 57 (2002) 79.

    MathSciNet  Google Scholar 

  39. V.A. Gritsenko and V.V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebras. I, Internat. J. Math. 9 (1998) 153 [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  40. V.A. Gritsenko and V.V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebras. II, Internat. J. Math. 9 (1998) 201 [alg-geom/9611028] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Dabholkar, J. Gomes and S. Murthy, Counting all dyons in N = 4 string theory, arXiv:0803.2692 [SPIRES].

  42. D.R. Morrison and G. Stevens, Terminal quotient singularities in dimensions three and four, Proc. Amer. Math. Soc. 90 (1984) 15.

    Article  MATH  MathSciNet  Google Scholar 

  43. A. Font and J.A. Lopez, Strings on eight-orbifolds, Nucl. Phys. B 703 (2004) 177 [hep-th/0405151] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. K. Dasgupta and S. Mukhi, Orbifolds of M-theory, Nucl. Phys. B 465 (1996) 399 [hep-th/9512196] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. A. Sen, Orbifolds of M-theory and string theory, Mod. Phys. Lett. A 11 (1996) 1339 [hep-th/9603113] [SPIRES].

    ADS  Google Scholar 

  46. S. Roy, Orbifolds of M-theory and type-II string theories in two dimensions, Nucl. Phys. B 498 (1997) 175 [hep-th/9612141] [SPIRES].

    Article  ADS  Google Scholar 

  47. N. Banerjee, D. Jatkar and A. Sen, unpublished.

  48. S. Govindarajan and P.K. Tripathy, work in progress.

  49. A. Sen, U-duality invariant dyon spectrum in type-II on T 6, JHEP 08 (2008) 037 [arXiv:0804.0651] [SPIRES].

    Article  Google Scholar 

  50. S. Govindarajan, D. Jatkar and K. Gopala Krishna, BKM superalgebras from counting dyons in N = 4 supersymmetric type II compactifications, to appear.

  51. S. Raghavan, Cusp forms of degree 2 and weight 3, Math. Ann. 224 (1976) 149.

    Article  MATH  MathSciNet  Google Scholar 

  52. W. Stein, Modular forms, a computational approach, Graduate Studies in Mathematics. Vol. 79, Amer. Math. Soc., Providence, RI (2007).

    Google Scholar 

  53. W. Stein et al., Sage Mathematics Software (Version 4.0). The Sage Development Team (2009) http://www.sagemath.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Govindarajan.

Additional information

ArXiv ePrint: 0907.1410

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govindarajan, S., Gopala Krishna, K. BKM Lie superalgebras from dyon spectra in Z N CHL orbifolds for composite N . J. High Energ. Phys. 2010, 14 (2010). https://doi.org/10.1007/JHEP05(2010)014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)014

Keywords

Navigation