Skip to main content
Log in

CP violation and circular polarisation in neutrino radiative decay

  • Regular Article - Theoretical Physics
  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

A preprint version of the article is available at arXiv.

Abstract

The radiative decay of neutral fermions has been studied for decades but CP violation induced within such a paradigm has evaded attention. CP violation in these processes can produce an asymmetry between circularly polarised directions of the radiated photons and produces an important source of net circular polarisation in particle and astroparticle physics observables. The results presented in this work outlines the general connection between CP violation and circular polarisation for both Dirac and Majorana fermions and can be used for any class of models that produce such radiative decays. The total CP violation is calculated based on a widely studied Yukawa interaction considered in both active and sterile neutrino radiative decay scenarios as well as searches for dark matter via direct detection and collider signatures. Finally, the phenomenological implications of the formalism on keV sterile neutrino decay, leptogenesis-induced right-handed neutrino radiative decay and IceCube-driven heavy dark matter decay are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].

  2. R. Shrock, Decay L0→ νlγ in gauge theories of weak and electromagnetic interactions, Phys. Rev.D 9 (1974) 743 [INSPIRE].

    ADS  Google Scholar 

  3. S.T. Petcov, The processes μ, μ\( ee\overline{e} \), ν′ → νγ in the Weinberg-Salam model with neutrino mixing, Sov. J. Nucl. Phys.25 (1977) 340 [Erratum ibid.25 (1977) 698] [Yad. Fiz.25 (1977) 641] [Erratum ibid.25 (1977) 1336] [INSPIRE].

  4. J.T. Goldman and G.J. Stephenson, Jr., Limits on the mass of the muon-neutrino in the absence of muon lepton number conservation, Phys. Rev.D 16 (1977) 2256 [INSPIRE].

    ADS  Google Scholar 

  5. J. Schechter and J.W.F. Valle, Majorana neutrinos and magnetic fields, Phys. Rev.D 24 (1981) 1883 [Erratum ibid.D 25 (1982) 283] [INSPIRE].

  6. P.B. Pal and L. Wolfenstein, Radiative decays of massive neutrinos, Phys. Rev.D 25 (1982) 766 [INSPIRE].

    ADS  Google Scholar 

  7. J. Schechter and J.W.F. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev.D 25 (1982) 774 [INSPIRE].

    ADS  Google Scholar 

  8. R.E. Shrock, Electromagnetic properties and decays of Dirac and Majorana neutrinos in a general class of gauge theories, Nucl. Phys.B 206 (1982) 359 [INSPIRE].

    Article  ADS  Google Scholar 

  9. J.F. Nieves, Electromagnetic properties of Majorana neutrinos, Phys. Rev.D 26 (1982) 3152 [INSPIRE].

    ADS  Google Scholar 

  10. B. Kayser, Majorana neutrinos and their electromagnetic properties, Phys. Rev.D 26 (1982) 1662 [INSPIRE].

    ADS  Google Scholar 

  11. M. Dvornikov and A. Studenikin, Electric charge and magnetic moment of massive neutrino, Phys. Rev.D 69 (2004) 073001 [hep-ph/0305206] [INSPIRE].

  12. M.S. Dvornikov and A.I. Studenikin, Electromagnetic form-factors of a massive neutrino, J. Exp. Theor. Phys.99 (2004) 254 [hep-ph/0411085] [INSPIRE].

  13. C. Giunti and A. Studenikin, Neutrino electromagnetic interactions: a window to new physics, Rev. Mod. Phys.87 (2015) 531 [arXiv:1403.6344] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Minkowski, μ → eγ at a rate of one out of 109muon decays?, Phys. Lett.B 67 (1977) 421 [INSPIRE].

  15. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc.C 7902131 (1979) 95 [INSPIRE].

    Google Scholar 

  16. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc.C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  17. S.L. Glashow, The future of elementary particle physics, NATO Sci. Ser.B 61 (1980) 687 [INSPIRE].

    Google Scholar 

  18. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE].

  19. J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev.D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  20. E. Bulbul, M. Markevitch, A. Foster, R.K. Smith, M. Loewenstein and S.W. Randall, Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters, Astrophys. J.789 (2014) 13 [arXiv:1402.2301] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, Unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster, Phys. Rev. Lett.113 (2014) 251301 [arXiv:1402.4119] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li and E.M. Zavanin, Light sterile neutrinos, J. Phys.G 43 (2016) 033001 [arXiv:1507.08204] [INSPIRE].

  23. M. Drewes et al., A white paper on keV sterile neutrino dark matter, JCAP01 (2017) 025 [arXiv:1602.04816] [INSPIRE].

    Google Scholar 

  24. Z.-Z. Xing, Flavor structures of charged fermions and massive neutrinos, arXiv:1909.09610 [INSPIRE].

  25. M. Chianese, G. Miele, S. Morisi and E. Vitagliano, Low energy IceCube data and a possible dark matter related excess, Phys. Lett.B 757 (2016) 251 [arXiv:1601.02934] [INSPIRE].

    Article  ADS  Google Scholar 

  26. IceCube collaboration, Search for neutrinos from decaying dark matter with IceCube, Eur. Phys. J.C 78 (2018) 831 [arXiv:1804.03848] [INSPIRE].

  27. IceCube collaboration, First observation of PeV-energy neutrinos with IceCube, Phys. Rev. Lett.111 (2013) 021103 [arXiv:1304.5356] [INSPIRE].

  28. IceCube collaboration, Observation and characterization of a cosmic muon neutrino flux from the northern hemisphere using six years of IceCube data, Astrophys. J.833 (2016) 3 [arXiv:1607.08006] [INSPIRE].

  29. T2K collaboration, Search for CP-violation in neutrino and antineutrino oscillations by the T2K experiment with 2.2 × 1021protons on target, Phys. Rev. Lett.121 (2018) 171802 [arXiv:1807.07891] [INSPIRE].

  30. T2K collaboration, Combined analysis of neutrino and antineutrino oscillations at T2K, Phys. Rev. Lett.118 (2017) 151801 [arXiv:1701.00432] [INSPIRE].

  31. NOvA collaboration, Constraints on oscillation parameters from νe appearance and νμ disappearance in NOvA, Phys. Rev. Lett.118 (2017) 231801 [arXiv:1703.03328] [INSPIRE].

  32. DUNE collaboration, The DUNE far detector interim design report, volume 2: single-phase module, arXiv:1807.10327 [INSPIRE].

  33. Hyper-Kamiokande Proto-Collaboration collaboration, Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande, PTEP2015 (2015) 053C02 [arXiv:1502.05199] [INSPIRE].

  34. Hyper-Kamiokande collaboration, Physics potentials with the second Hyper-Kamiokande detector in Korea, PTEP2018 (2018) 063C01 [arXiv:1611.06118] [INSPIRE].

  35. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett.B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  36. E.K. Akhmedov, V.A. Rubakov and A. Yu. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett.81 (1998) 1359 [hep-ph/9803255] [INSPIRE].

  37. W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys.315 (2005) 305 [hep-ph/0401240] [INSPIRE].

  38. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept.466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    Article  ADS  Google Scholar 

  39. N.F. Bell, B. Kayser and S.S.C. Law, Electromagnetic leptogenesis, Phys. Rev.D 78 (2008) 085024 [arXiv:0806.3307] [INSPIRE].

  40. C. Bœhm, C. Degrande, O. Mattelaer and A.C. Vincent, Circular polarisation: a new probe of dark matter and neutrinos in the sky, JCAP05 (2017) 043 [arXiv:1701.02754] [INSPIRE].

    Article  ADS  Google Scholar 

  41. B. Kayser, CPT, CP and C phases and their effects in Majorana particle processes, Phys. Rev.D 30 (1984) 1023 [INSPIRE].

    ADS  Google Scholar 

  42. C. Broggini, C. Giunti and A. Studenikin, Electromagnetic properties of neutrinos, Adv. High Energy Phys.2012 (2012) 459526 [arXiv:1207.3980] [INSPIRE].

    Article  Google Scholar 

  43. W. Bonivento, D. Gorbunov, M. Shaposhnikov and A. Tokareva, Polarization of photons emitted by decaying dark matter, Phys. Lett.B 765 (2017) 127 [arXiv:1610.04532] [INSPIRE].

    Article  ADS  Google Scholar 

  44. X. Shi and G. Sigl, A type II supernovae constraint on electron-neutrino — sterile-neutrino mixing, Phys. Lett.B 323 (1994) 360 [Erratum ibid.B 324 (1994) 516] [hep-ph/9312247] [INSPIRE].

  45. G.G. Raffelt and S. Zhou, Supernova bound on keV-mass sterile neutrinos reexamined, Phys. Rev.D 83 (2011) 093014 [arXiv:1102.5124] [INSPIRE].

  46. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading, MA, U.S.A. (1995) [INSPIRE].

    Google Scholar 

  47. Z.-Z. Xing and Y.-L. Zhou, Enhanced electromagnetic transition dipole moments and radiative decays of massive neutrinos due to the seesaw-induced non-unitary effects, Phys. Lett.B 715 (2012) 178 [arXiv:1201.2543] [INSPIRE].

    Article  ADS  Google Scholar 

  48. Y.F. Li and Z.-Z. Xing, Possible capture of keV sterile neutrino dark matter on radioactive β-decaying nuclei, Phys. Lett.B 695 (2011) 205 [arXiv:1009.5870] [INSPIRE].

    Article  ADS  Google Scholar 

  49. T. Araki and Y.F. Li, Q6flavor symmetry model for the extension of the minimal Standard Model by three right-handed sterile neutrinos, Phys. Rev.D 85 (2012) 065016 [arXiv:1112.5819] [INSPIRE].

  50. K.N. Abazajian, Resonantly produced 7 keV sterile neutrino dark matter models and the properties of milky way satellites, Phys. Rev. Lett.112 (2014) 161303 [arXiv:1403.0954] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A.C. Vincent, E.F. Martinez, P. Hernández, M. Lattanzi and O. Mena, Revisiting cosmological bounds on sterile neutrinos, JCAP04 (2015) 006 [arXiv:1408.1956] [INSPIRE].

  52. A. Harada and A. Kamada, Structure formation in a mixed dark matter model with decaying sterile neutrino: the 3.5 keV X-ray line and the galactic substructure, JCAP01 (2016) 031 [arXiv:1412.1592] [INSPIRE].

  53. V.D. Barger, R.J.N. Phillips and S. Sarkar, Remarks on the KARMEN anomaly, Phys. Lett.B 352 (1995) 365 [Erratum ibid.B 356 (1995) 617] [hep-ph/9503295] [INSPIRE].

  54. M. Gluck, S. Rakshit and E. Reya, The Lamb shift contribution of very light milli-charged fermions, Phys. Rev.D 76 (2007) 091701 [hep-ph/0703140] [INSPIRE].

  55. C. Bœhm, A. Olivares-Del Campo, M. Ramirez-Quezada and Y.-L. Zhou, Polarisation of high energy gamma-rays after scattering, JCAP12 (2019) 041 [arXiv:1903.11074] [INSPIRE].

    ADS  Google Scholar 

  56. SHiP collaboration, A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [INSPIRE].

  57. IceCube collaboration, Evidence for astrophysical muon neutrinos from the northern sky with IceCube, Phys. Rev. Lett.115 (2015) 081102 [arXiv:1507.04005] [INSPIRE].

  58. IceCube collaboration, Measurement of the diffuse astrophysical muon-neutrino spectrum with ten years of IceCube data, PoS(ICRC2019)1017 (2020) [arXiv:1908.09551] [INSPIRE].

  59. M. Chianese, D.F.G. Fiorillo, G. Miele, S. Morisi and O. Pisanti, Decaying dark matter at IceCube and its signature on high energy gamma experiments, JHEP11 (2019) 046 [arXiv:1907.11222] [INSPIRE].

    Google Scholar 

  60. Y. Sui and P.S. Bhupal Dev, A combined astrophysical and dark matter interpretation of the IceCube HESE and throughgoing muon events, JCAP07 (2018) 020 [arXiv:1804.04919] [INSPIRE].

    Article  ADS  Google Scholar 

  61. M. Chianese, G. Miele, S. Morisi and E. Peinado, Neutrinophilic dark matter in the epoch of IceCube and Fermi-LAT, JCAP12 (2018) 016 [arXiv:1808.02486] [INSPIRE].

    Article  ADS  Google Scholar 

  62. P. Di Bari, P.O. Ludl and S. Palomares-Ruiz, Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal, JCAP11 (2016) 044 [arXiv:1606.06238] [INSPIRE].

    Article  Google Scholar 

  63. M. Re Fiorentin, V. Niro and N. Fornengo, A consistent model for leptogenesis, dark matter and the IceCube signal, JHEP11 (2016) 022 [arXiv:1606.04445] [INSPIRE].

    Article  Google Scholar 

  64. M. Chianese and A. Merle, A consistent theory of decaying dark matter connecting IceCube to the Sesame street, JCAP04 (2017) 017 [arXiv:1607.05283] [INSPIRE].

    Article  ADS  Google Scholar 

  65. N. Hiroshima, R. Kitano, K. Kohri and K. Murase, High-energy neutrinos from multibody decaying dark matter, Phys. Rev.D 97 (2018) 023006 [arXiv:1705.04419] [INSPIRE].

  66. P. Di Bari, K. Farrag, R. Samanta and Y.L. Zhou, Density matrix calculation of the dark matter abundance in the Higgs induced right-handed neutrino mixing model, arXiv:1908.00521 [INSPIRE].

  67. A. Anisimov and P. Di Bari, Cold dark matter from heavy right-handed neutrino mixing, Phys. Rev.D 80 (2009) 073017 [arXiv:0812.5085] [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Ling Zhou.

Additional information

ArXiv ePrint: 1910.08558

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, S., Ramirez-Quezada, M. & Zhou, YL. CP violation and circular polarisation in neutrino radiative decay. J. High Energ. Phys. 2020, 178 (2020). https://doi.org/10.1007/JHEP04(2020)178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2020)178

Keywords

Navigation