Skip to main content
Log in

Forward-backward asymmetry in top quark production from light colored scalars in SO(10) model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The forward-backward asymmetry in top pair production at Tevatron has been reconfirmed by the CDF collaboration with 5.3 fb−1 of accumulated data. These measurements also report that the asymmetry is the largest in regions of high invariant mass \( {M_{t\overline t }} \) and rapidity difference |ΔY|. We consider light colored sextet scalars appearing in a particular non-supersymmetric SO(10) grand unification model within the 126 scalar representation. These scalar states have masses in the range of 300 GeV − 2 TeV consistent with the requirements of gauge coupling unification and bounds on the proton lifetime. The cross section and the total asymmetry can be simultaneously explained with the contributions of these scalars within 1σ. We find that the simultaneous fitting of the cross section, the total asymmetry and the asymmetries in different rapidity and \( {M_{t\overline t }} \) bins gives only a marginal improvement over the SM contribution. We also study various production mechanisms of these colored sextet scalars at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. CDF collaboration, T. Aaltonen et al., Forward-Backward Asymmetry in Top Quark Production in \( p\overline p \) Collisions at \( \sqrt {s} = 1.96\,TeV \), Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [SPIRES].

    Article  ADS  Google Scholar 

  2. D0 collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [SPIRES].

    Article  ADS  Google Scholar 

  3. M.T. Bowen, S.D. Ellis and D. Rainwater, Standard model top quark asymmetry at the Fermilab Tevatron, Phys. Rev. D 73 (2006) 014008 [hep-ph/0509267] [SPIRES].

    ADS  Google Scholar 

  4. O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [SPIRES].

    ADS  Google Scholar 

  5. L.G. Almeida, G.F. Sterman and W. Vogelsang, Threshold Resummation for the Top Quark Charge Asymmetry, Phys. Rev. D 78 (2008) 014008 [arXiv:0805.1885] [SPIRES].

    ADS  Google Scholar 

  6. P.H. Frampton, J. Shu and K. Wang, Axigluon as Possible Explanation for \( p\overline p \to t\overline t \) Forward-Backward Asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [SPIRES].

    ADS  Google Scholar 

  7. J. Cao, Z. Heng, L. Wu and J.M. Yang, Top quark forward-backward asymmetry at the Tevatron: a comparative study in different new physics models, Phys. Rev. D 81 (2010) 014016 [arXiv:0912.1447] [SPIRES].

    ADS  Google Scholar 

  8. K. Cheung, W.-Y. Keung and T.-C. Yuan, Top Quark Forward-Backward Asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [SPIRES].

    ADS  Google Scholar 

  9. B. Xiao, Y.-k. Wang and S.-h. Zhu, Forward-backward asymmetry and differential cross section of top quark in flavor violating Z′ model at O2 s α X ), Phys. Rev. D 82 (2010) 034026 [arXiv:1006.2510] [SPIRES].

    ADS  Google Scholar 

  10. M. Bauer, F. Goertz, U. Haisch, T. Pfoh and S. Westhoff, Top-Quark Forward-Backward Asymmetry in Randall-Sundrum Models Beyond the Leading Order, JHEP 11 (2010) 039 [arXiv:1008.0742] [SPIRES].

    Article  ADS  Google Scholar 

  11. C.-H. Chen, G. Cvetič and C.S. Kim, Forward-backward asymmetry of top quark in unparticle physics, Phys. Lett. B 694 (2011) 393 [arXiv:1009.4165] [SPIRES].

    ADS  Google Scholar 

  12. A. Djouadi, G. Moreau, F. Richard and R.K. Singh, The forward-backward asymmetry of top quark production at the Tevatron in warped extra dimensional models, Phys. Rev. D 82 (2010) 071702 [arXiv:0906.0604] [SPIRES].

    ADS  Google Scholar 

  13. E. Alvarez, L. Da Rold and A. Szynkman, A composite Higgs model analysis of forward-backward asymmetries in the production of tops at Tevatron and bottoms at LEP and SLC, arXiv:1011.6557 [SPIRES].

  14. D.-W. Jung, P. Ko and J.S. Lee, Longitudinal top polarization as a probe of a possible origin of forward-backward asymmetry of the top quark at the Tevatron, arXiv:1011.5976 [SPIRES].

  15. J. Cao, L. Wang, L. Wu and J.M. Yang, Top quark forward-backward asymmetry, FCNC decays and like-sign pair production as a joint probe of new physics, arXiv:1101.4456 [SPIRES].

  16. D. Choudhury, R.M. Godbole, S.D. Rindani and P. Saha, Top polarization, forward-backward asymmetry and new physics, arXiv:1012.4750 [SPIRES].

  17. E.L. Berger, Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Top Quark Forward-Backward Asymmetry and Same-Sign Top Quark Pairs, arXiv:1101.5625 [SPIRES].

  18. V. Barger, W.-Y. Keung and C.-T. Yu, Asymmetric Left-Right Model and the Top Pair Forward-Backward Asymmetry, Phys. Rev. D 81 (2010) 113009 [arXiv:1002.1048] [SPIRES].

    ADS  Google Scholar 

  19. S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [SPIRES].

    ADS  Google Scholar 

  20. J. Shu, T.M.P. Tait and K. Wang, Explorations of the Top Quark Forward-Backward Asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [SPIRES].

    ADS  Google Scholar 

  21. D.-W. Jung, P. Ko, J.S. Lee and S.-h. Nam, Model independent analysis of the forward-backward asymmetry of top quark production at the Tevatron, Phys. Lett. B 691 (2010) 238 [arXiv:0912.1105] [SPIRES].

    ADS  Google Scholar 

  22. A. Arhrib, R. Benbrik and C.-H. Chen, Forward-backward asymmetry of top quark in diquark models, Phys. Rev. D 82 (2010) 034034 [arXiv:0911.4875] [SPIRES].

    ADS  Google Scholar 

  23. I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in top quark pair production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [SPIRES].

    ADS  Google Scholar 

  24. I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light Colored Scalar as Messenger of Up-Quark Flavor Dynamics in Grand Unified Theories, Phys. Rev. D 82 (2010) 094015 [arXiv:1007.2604] [SPIRES].

    ADS  Google Scholar 

  25. CDF collaboration, T. Aaltonen et al., Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production, arXiv:1101.0034 [SPIRES].

  26. CDF collaboration, T. Aaltonen et al., First Measurement of the Ratio \( {{{{\sigma_{\left( {t\overline t } \right)}}}} \left/ {{{\sigma_{\left( {{{Z} \left/ {{\gamma * \to ll}} \right.}} \right)}}}} \right.} \) and Precise Extraction of the t-tbar Cross Section, Phys. Rev. Lett. 105 (2010) 012001 [arXiv:1004.3224] [SPIRES].

    Article  ADS  Google Scholar 

  27. MCFM stands for Monte Carlo for FeMtobarn processes: http://mcfm.fnal.gov/.

  28. CDF collaboration, T. Aaltonen et al., First Measurement of the \( t\overline t \) Differential Cross Section \( {{{d\sigma }} \left/ {{d{M_{t\overline t }}}} \right.} \) in \( p\overline p \) Collisions at \( \sqrt {s} = 1.96\,TeV \), Phys. Rev. Lett. 102 (2009) 222003 [arXiv:0903.2850] [SPIRES].

    Article  ADS  Google Scholar 

  29. K. Cheung and T.-C. Yuan, Top Quark Forward-Backward Asymmetry in the Large Invariant Mass Region, arXiv:1101.1445 [SPIRES].

  30. C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Extraordinary Phenomenology from Warped Flavor Triviality, arXiv:1101.2902 [SPIRES].

  31. V. Barger, W.-Y. Keung and C.-T. Yu, Tevatron Asymmetry of Tops in a W’,Z’ Model, Phys. Lett. B 698 (2011) 243 [arXiv:1102.0279] [SPIRES].

    ADS  Google Scholar 

  32. B. Bhattacherjee, S.S. Biswal and D. Ghosh, Top quark forward-backward asymmetry at Tevatron and its implications at the LHC, arXiv:1102.0545 [SPIRES].

  33. B. Grinstein, A.L. Kagan, M. Trott and J. Zupan, Forward-backward asymmetry in t anti-t production from flavour symmetries, arXiv:1102.3374 [SPIRES].

  34. H. Georgi and C. Jarlskog, A New Lepton-Quark Mass Relation in a Unified Theory, Phys. Lett. B 86 (1979) 297 [SPIRES].

    ADS  Google Scholar 

  35. S. Bertolini, L. Di Luzio and M. Malinsky, Intermediate mass scales in the non-supersymmetric SO(10) grand unification: a reappraisal, Phys. Rev. D 80 (2009) 015013 [arXiv:0903.4049] [SPIRES].

    ADS  Google Scholar 

  36. S. Bertolini, L. Di Luzio and M. Malinsky, On the vacuum of the minimal nonsupersymmetric SO(10) unification, Phys. Rev. D 81 (2010) 035015 [arXiv:0912.1796] [SPIRES].

    ADS  Google Scholar 

  37. A.S. Joshipura and K.M. Patel, Fermion Masses in SO(10) Models, arXiv:1102.5148 [SPIRES].

  38. R.N. Mohapatra and B. Sakita, SO(2N) grand unification in an SU(N) basis, Phys. Rev. D 21 (1980) 1062 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. F. Wilczek and A. Zee, Families from Spinors, Phys. Rev. D 25 (1982) 553 [SPIRES]

    ADS  Google Scholar 

  40. C.S. Aulakh and A. Girdhar, MSGUT a la Pati-Salam: From futility to precision, Nucl. Phys. B 711 (2005) 275 [hep-ph/0405074] [SPIRES].

    ADS  Google Scholar 

  41. C.S. Aulakh and A. Girdhar, SO(10) a la Pati-Salam, Int. J. Mod. Phys. A 20 (2005) 865 [hep-ph/0204097] [SPIRES].

    ADS  Google Scholar 

  42. P. Nath and R.M. Syed, Analysis of couplings with large tensor representations in SO(2N) and proton decay, Phys. Lett. B 506 (2001) 68 [Erratum ibid. B 508 (2001) 216] [hep-ph/0103165] [SPIRES].

    ADS  Google Scholar 

  43. T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac and N. Okada, General formulation for proton decay rate in minimal supersymmetric SO(10) GUT, Eur. Phys. J. C 42 (2005) 191 [hep-ph/0401213] [SPIRES].

    Article  ADS  Google Scholar 

  44. T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac and N. Okada, SO(10) group theory for the unified model building, J. Math. Phys. 46 (2005) 033505 [hep-ph/0405300] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. T.P. Cheng, E. Eichten and L.-F. Li, Higgs Phenomena in Asymptotically Free Gauge Theories, Phys. Rev. D9 (1974) 2259 [SPIRES].

    ADS  Google Scholar 

  46. A. Giveon, L.J. Hall and U. Sarid, SU(5) unification revisited, Phys. Lett. B 271 (1991) 138 [SPIRES].

    ADS  Google Scholar 

  47. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  48. Super-Kamiokande collaboration, H. Nishino et al., Search for Proton Decay via pe +π0 and pμ +π0 in a Large Water Cherenkov Detector, Phys. Rev. Lett. 102 (2009) 141801 [arXiv:0903.0676] [SPIRES].

    Article  ADS  Google Scholar 

  49. R.N. Mohapatra and G. Senjanović, Higgs boson effects in grand unified theories, Phys. Rev. D 27 (1983) 1601 [SPIRES].

    ADS  Google Scholar 

  50. J. Pumplin, A. Belyaev, J. Huston, D. Stump and W.K. Tung, Parton distributions and the strong coupling: CTEQ6A BPDFs, JHEP 02 (2006) 032 [hep-ph/0512167] [SPIRES].

    Article  ADS  Google Scholar 

  51. N. Kidonakis and R. Vogt, The Theoretical top quark cross section at the Tevatron and the LHC, Phys. Rev. D 78 (2008) 074005 [arXiv:0805.3844] [SPIRES].

    ADS  Google Scholar 

  52. Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E.M. Wagner, Forward-Backward Asymmetry of Top Quark Pair Production, Phys. Rev. D 81 (2010) 114004 [arXiv:1003.3461] [SPIRES].

    ADS  Google Scholar 

  53. J.M. Arnold, M. Pospelov, M. Trott and M.B. Wise, Scalar Representations and Minimal Flavor Violation, JHEP 01 (2010) 073 [arXiv:0911.2225] [SPIRES].

    Article  ADS  Google Scholar 

  54. CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt {s} = 1.96\,TeV \), Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [SPIRES].

    ADS  Google Scholar 

  55. C.-H. Chen, Colored scalars on \( {D^0} \to {\overline D^0} \) mixing in diquark models, Phys. Lett. B 680 (2009) 133 [arXiv:0902.2620] [SPIRES].

    ADS  Google Scholar 

  56. R.N. Mohapatra, N. Okada and H.-B. Yu, Diquark Higgs at LHC, Phys. Rev. D 77 (2008) 011701 [arXiv:0709.1486] [SPIRES].

    ADS  Google Scholar 

  57. E.L. Berger, Q.-H. Cao, C.-R. Chen, G. Shaughnessy and H. Zhang, Color Sextet Scalars in Early LHC Experiments, Phys. Rev. Lett. 105 (2010) 181802 [arXiv:1005.2622] [SPIRES].

    Article  ADS  Google Scholar 

  58. T. Han, I. Lewis and T. McElmurry, QCD Corrections to Scalar Diquark Production at Hadron Colliders, JHEP 01 (2010) 123 [arXiv:0909.2666] [SPIRES].

    Article  ADS  Google Scholar 

  59. C.-R. Chen, W. Klemm, V. Rentala and K. Wang, Color Sextet Scalars at the CERN Large Hadron Collider, Phys. Rev. D 79 (2009) 054002 [arXiv:0811.2105] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, K.M., Sharma, P. Forward-backward asymmetry in top quark production from light colored scalars in SO(10) model. J. High Energ. Phys. 2011, 85 (2011). https://doi.org/10.1007/JHEP04(2011)085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)085

Keywords

Navigation