Skip to main content
Log in

Differential geometry with a projection: application to double field theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In recent development of double field theory, as for the description of the massless sector of closed strings, the spacetime dimension is formally doubled, i.e. from D to D+D, and the T-duality is realized manifestly as a global O(D, D) rotation. In this paper, we conceive a differential geometry characterized by a O(D, D) symmetric projection, as the underlying mathematical structure of double field theory. We introduce a differential operator compatible with the projection, which, contracted with the projection, can be covariantized and may replace the ordinary derivatives in the generalized Lie derivative that generates the gauge symmetry of double field theory. We construct various gauge covariant tensors which include a scalar and a tensor carrying two O(D, D) vector indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: a modern introduction, Cambridge University Press, Cambridge U.K. (2007), p. 739.

    MATH  Google Scholar 

  2. A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  3. T.H. Buscher, Quantum corrections and extended supersymmetry in new sigma models, Phys. Lett. B 159 (1985) 127 [SPIRES].

    ADS  Google Scholar 

  4. T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  5. T.H. Buscher, Path integral derivation of quantum duality in nonlinear sigma models, Phys. Lett. B 201 (1988) 466 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  6. A. Giveon, E. Rabinovici and G. Veneziano, Duality in string background space, Nucl. Phys. B 322 (1989) 167 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  7. A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  8. A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  9. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [SPIRES].

    ADS  Google Scholar 

  10. W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [SPIRES].

    ADS  Google Scholar 

  11. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  12. C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  14. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  15. S.K. Kwak, Invariances and equations of motion in double field theory, JHEP 10 (2010) 047 [arXiv:1008.2746] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [SPIRES].

    Article  ADS  Google Scholar 

  17. T. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990) 631.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford University, Oxford, U.K. (2003), math/0401221.

  19. K. Peeters, A field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun. 176 (2007) 550 [cs.SC/0608005].

    Article  ADS  MATH  Google Scholar 

  20. K. Peeters, Introducing Cadabra: a symbolic computer algebra system for field theory problems, hep-th/0701238 [SPIRES].

  21. E. Bergshoeff, I. Entrop and R. Kallosh, Exact duality in string effective action, Phys. Rev. D 49 (1994) 6663 [hep-th/9401025] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  22. E. Bergshoeff, C.M. Hull and T. Ort´ın, Duality in the type-II superstring effective action, Nucl. Phys. B 451 (1995) 547 [hep-th/9504081] [SPIRES].

    Article  ADS  Google Scholar 

  23. N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  24. N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual superconformal symmetry from AdS 5 × S 5 superstring integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  25. H. Godazgar and M.J. Perry, Real fermionic symmetry in type-II supergravity, JHEP 01 (2011) 032 [arXiv:1008.3128] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  26. P. West, E11, generalised space-time and IIA string theory, Phys. Lett. B 696 (2011) 403 [arXiv:1009.2624] [SPIRES].

    ADS  Google Scholar 

  27. D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [SPIRES].

    Article  Google Scholar 

  28. D.S. Berman, N.B. Copland and D.C. Thompson, Background field equations for the duality symmetric string, Nucl. Phys. B 791 (2008) 175 [arXiv:0708.2267] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  29. D.S. Berman and D.C. Thompson, Duality symmetric strings, dilatons and O(d, d) effective actions, Phys. Lett. B 662 (2008) 279 [arXiv:0712.1121] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  30. R.R. Metsaev and A.A. Tseytlin, Order α(two loop) equivalence of the string equations of motion and the σ-model Weyl invariance conditions: dependence on the dilaton and the antisymmetric tensor, Nucl. Phys. B 293 (1987) 385 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  31. K.A. Meissner, Symmetries of higher-order string gravity actions, Phys. Lett. B 392 (1997) 298 [hep-th/9610131] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  32. M.B. Green, J.G. Russo and P. Vanhove, String theory dualities and supergravity divergences, JHEP 06 (2010) 075 [arXiv:1002.3805] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  33. M.B. Green, S.D. Miller, J.G. Russo and P. Vanhove, Eisenstein series for higher-rank groups and string theory amplitudes, arXiv:1004.0163 [SPIRES].

  34. D.S. Berman and M.J. Perry, Generalized geometry and M-theory, arXiv:1008.1763 [SPIRES].

  35. M. Dine, P.Y. Huet and N. Seiberg, Large and small radius in string theory, Nucl. Phys. B 322 (1989) 301 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  36. O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [SPIRES].

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Hyuck Park.

Additional information

ArXiv ePrint: 1011.1324

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, I., Lee, K. & Park, JH. Differential geometry with a projection: application to double field theory. J. High Energ. Phys. 2011, 14 (2011). https://doi.org/10.1007/JHEP04(2011)014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)014

Keywords

Navigation