Skip to main content
Log in

2D \( \mathcal{N} = \left( {4,4} \right) \) superspace supergravity and bi-projective superfields

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a new superspace formulation for \( \mathcal{N} = \left( {4,4} \right) \) conformal supergravity in two dimensions. This is based on a geometry where the structure group of the curved superspace is chosen to be SO(1,1) × SU(2) L × SU(2) R . The off-shell supergravity multiplet possesses super-Weyl transformations generated by an unconstrained real scalar superfield. The new supergravity formulation turns out to be an extension of the minimal multiplet introduced in 1988 by Gates et. al. and it allows the existence of various off-shell matter supermultiplets. Covariant twisted-II and twisted-I multiplets respectively describe the field strength of an Abelian vector multiplet and its prepotential. Moreover, we introduce covariant bi-projective superfields. These define a large class of matter multiplets coupled to 2D \( \mathcal{N} = \left( {4,4} \right) \) conformal supergravity. They are the analogue of the covariant projective superfields recently introduced for 4D and 5D matter-coupled supergravity but they differ by the fact that bi-projective superfields are defined with the use of two \( \mathbb{C}{P^1} \) instead of one. We conclude by giving a manifestly locally supersymmetric and super-Weyl invariant action principle in bi-projective superspace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Gates Jr., M.T. Grisaru, M. Roček and W. Siegel, Superspace, or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [SPIRES].

    Google Scholar 

  2. I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity, or a walk through superspace, IOP, Bristol U.K. (1998).

    MATH  Google Scholar 

  3. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.K. (1992).

    Google Scholar 

  4. A.A. Rosly, Super Yang-Mills constraints as integrability conditions, in the proceedings of the International Seminar on Group Theoretical Methods in Physics, November 24–26, Zvenigorod, U.S.S.R. (1982), M.A. Markov ed., Nauka, Moscow, (1983), see volume 1, page 263.

    Google Scholar 

  5. A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace, Class. Quant. Grav. 1 (1984) 469 [SPIRES].

    Article  ADS  Google Scholar 

  6. A. Karlhede, U. Lindström and M. Roček, Self-interacting tensor multiplets in N = 2 superspace, Phys. Lett. B 147 (1984) 297.

    ADS  Google Scholar 

  7. P. Fayet, Fermi-Bose hypersymmetry, Nucl. Phys. B 113 (1976) 135 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Grimm, M. Sohnius and J. Wess, Extended supersymmetry and gauge theories, Nucl. Phys. B 133 (1978) 275 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. M.F. Sohnius, Supersymmetry and central charges, Nucl. Phys. B 138 (1978) 109 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. P.S. Howe, K.S. Stelle and P.C. West, N = 1, d = 6 harmonic superspace, Class. Quant. Grav. 2 (1985) 815 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. K.S. Stelle, Manifest realizations of extended supersymmetry, NSF-ITP-85-001.

  12. W. Siegel and M. Roček, On off-shell supermultiplets, Phys. Lett. B 105 (1981) 275 [SPIRES].

    ADS  Google Scholar 

  13. A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic superspace, Cambridge University Press, Cambridge U.K. (2001), pag. 306.

    Book  MATH  Google Scholar 

  14. U. Lindström and M. Roček, New hyperKähler metrics and new supermultiplets, Commun. Math. Phys. 115 (1988) 21 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  15. U. Lindström and M. Roček, N = 2 super Yang-Mills theory in projective superspace, Commun. Math. Phys. 128 (1990) 191 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  16. F. Gonzalez-Rey, M. Roček, S. Wiles, U. Lindström and R. von Unge, Feynman rules in N = 2 projective superspace. I: massless hypermultiplets, Nucl. Phys. B 516 (1998) 426 [hep-th/9710250] [SPIRES].

    Article  ADS  Google Scholar 

  17. F. Gonzalez-Rey and R. von Unge, Feynman rules in N = 2 projective superspace. II: massive hypermultiplets, Nucl. Phys. B 516 (1998) 449 [hep-th/9711135] [SPIRES].

    Article  ADS  Google Scholar 

  18. F. Gonzalez-Rey, Feynman rules in N = 2 projective superspace. III: yang- Mills multiplet, hep-th/9712128 [SPIRES].

  19. S.M. Kuzenko, Projective superspace as a double-punctured harmonic superspace, Int. J. Mod. Phys. A 14 (1999) 1737 [hep-th/9806147] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. D. Jain and W. Siegel, Deriving projective hyperspace from harmonic, Phys. Rev. D 80 (2009) 045024 [arXiv:0903.3588] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. S.J. Gates Jr., C.M. Hull and M. Roček, Twisted multiplets and new supersymmetric nonlinear σ-models, Nucl. Phys. B 248 (1984) 157 [SPIRES].

    Article  ADS  Google Scholar 

  22. N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, HyperKähler metrics and supersymmetry, Commun. Math. Phys. 108 (1987) 535 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  23. U. Lindström and M. Roček, Properties of hyperKähler manifolds and their twistor spaces, Commun. Math. Phys. 293 (2010) 257 [arXiv:0807.1366] [SPIRES].

    Article  ADS  Google Scholar 

  24. S.M. Kuzenko and W.D. Linch III, On five-dimensional superspaces, JHEP 02 (2006) 038 [hep-th/0507176] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Grundberg and U. Lindström, Actions for linear multiplets in six dimensions, Class. Quant. Grav. 2 (1985) L33 [SPIRES].

    Article  ADS  Google Scholar 

  26. S.J. Gates Jr., S. Penati and G. Tartaglino-Mazzucchelli, 6D supersymmetry, projective superspace and 4D, N = 1 superfields, JHEP 05 (2006) 051 [hep-th/0508187] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. S.J. Gates Jr., S. Penati and G. Tartaglino-Mazzucchelli, 6D supersymmetric nonlinear sigma-models in 4D, N = 1 superspace, JHEP 09 (2006) 006 [hep-th/0604042] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. S.M. Kuzenko, On compactified harmonic/projective superspace, 5D superconformal theories and all that, Nucl. Phys. B 745 (2006) 176 [hep-th/0601177] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. S.M. Kuzenko, On superconformal projective hypermultiplets, JHEP 12 (2007) 010 [arXiv:0710.1479] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Five-dimensional N = 1 AdS superspace: geometry, off-shell multiplets and dynamics, Nucl. Phys. B 785 (2007) 34 [arXiv:0704.1185] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Five-dimensional superfield supergravity, Phys. Lett. B 661 (2008) 42 [arXiv:0710.3440] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, 5D supergravity and projective superspace, JHEP 02 (2008) 004 [arXiv:0712.3102] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Super-Weyl invariance in 5D supergravity, JHEP 04 (2008) 032 [arXiv:0802.3953] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. S.M. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, 4D N = 2 supergravity and projective superspace, JHEP 09 (2008) 051 [arXiv:0805.4683] [SPIRES].

    Article  ADS  Google Scholar 

  35. S.M. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, On conformal supergravity and projective superspace, JHEP 08 (2009) 023 [arXiv:0905.0063] [SPIRES].

    Article  ADS  Google Scholar 

  36. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Conformally flat supergeometry in five dimensions, JHEP 06 (2008) 097 [arXiv:0804.1219] [SPIRES].

  37. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Field theory in 4D N = 2 conformally flat superspace, JHEP 10 (2008) 001 [arXiv:0807.3368] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. S.M. Kuzenko, On N = 2 supergravity and projective superspace: dual formulations, Nucl. Phys. B 810 (2009) 135 [arXiv:0807.3381] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Different representations for the action principle in 4D N = 2 supergravity, JHEP 04 (2009) 007 [arXiv:0812.3464] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. J. Wess and B. Zumino, Superspace formulation of supergravity, Phys. Lett. B 66 (1977) 361 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. R. Grimm, J. Wess and B. Zumino, Consistency checks on the superspace formulation of supergravity, Phys. Lett. B 73 (1978) 415 [SPIRES].

    ADS  Google Scholar 

  42. R. Grimm, J. Wess and B. Zumino, Superfield lagrangian for supergravity, Phys. Lett. B 74 (1978) 51 [SPIRES].

    ADS  Google Scholar 

  43. T. Kugo and K. Ohashi, Off-shell D = 5 supergravity coupled to matter-Yang-Mills system, Prog. Theor. Phys. 105 (2001) 323 [hep-ph/0010288] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. T. Fujita and K. Ohashi, Superconformal tensor calculus in five dimensions, Prog. Theor. Phys. 106 (2001) 221 [hep-th/0104130] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. E. Bergshoeff et al., Weyl multiplets of N = 2 conformal supergravity in five dimensions, JHEP 06 (2001) 051 [hep-th/0104113] [SPIRES]

    Article  MathSciNet  ADS  Google Scholar 

  46. E. Bergshoeff et al., Superconformal N = 2, D = 5 matter with and without actions, JHEP 10 (2002) 045 [hep-th/0205230] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. E. Bergshoeff et al., N = 2 supergravity in five dimensions revisited, Class. Quant. Grav. 21 (2004) 3015 [Class. Quant. Grav. 23 (2006) 7149] [hep-th/0403045] [SPIRES]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. R. Grimm, Solution of the Bianchi identities in SU(2) extended superspace with constraints, in Unification of the Fundamental Particle Interactions, S. Ferrara, J. Ellis and P. van Nieuwenhuizen eds., Plenum Press, New York U.S.A. (1980), pag. 509.

    Google Scholar 

  49. P.S. Howe, A superspace approach to extended conformal supergravity, Phys. Lett. B 100 (1981) 389 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. P.S. Howe, Supergravity in superspace, Nucl. Phys. B 199 (1982) 309 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. B. de Wit, J.W. van Holten and A. Van Proeyen, Transformation rules of N = 2 supergravity multiplets, Nucl. Phys. B 167 (1980) 186 [SPIRES].

    Article  ADS  Google Scholar 

  52. E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity, Nucl. Phys. B 182 (1981) 173 [SPIRES].

    Article  ADS  Google Scholar 

  53. B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 supergravity-matter systems, Nucl. Phys. B 255 (1985) 569 [SPIRES].

    ADS  Google Scholar 

  54. A.S. Galperin, N.A. Ky and E. Sokatchev, N = 2 supergravity in superspace: Solution to the constraints, Class. Quant. Grav. 4 (1987) 1235 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  55. A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E. Sokatchev, N = 2 supergravity in superspace: different versions and matter couplings, Class. Quant. Grav. 4 (1987) 1255 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. W. Siegel, Solution to constraints in Wess-Zumino supergravity formalism, Nucl. Phys. B 142 (1978) 301.

    Article  ADS  Google Scholar 

  57. W. Siegel and S.J. Gates Jr., Superfield supergravity, Nucl. Phys. B 147 (1979) 77 [SPIRES].

    Article  ADS  Google Scholar 

  58. T. Buscher, U. Lindström and M. Roček, New supersymmetric σ-models with Wess-Zumino terms, Phys. Lett. B 202 (1988) 94 [SPIRES].

    ADS  Google Scholar 

  59. M. Roček, K. Schoutens and A. Sevrin, Off-shell WZW models in extended superspace, Phys. Lett. B 265 (1991) 303 [SPIRES].

    ADS  Google Scholar 

  60. U. Lindström, I.T. Ivanov and M. Roček, New N = 4 superfields and σ-models, Phys. Lett. B 328 (1994) 49 [hep-th/9401091] [SPIRES].

    ADS  Google Scholar 

  61. S.J. Gates Jr. and S.V. Ketov, 2D(4, 4) hypermultiplets. I: diversity for N = 4 models, Phys. Lett. B 418 (1998) 111 [hep-th/9504077] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. S.J. Gates and S.V. Ketov, 2D(4, 4) hypermultiplets. II: field theory origins of dualities, Phys. Lett. B 418 (1998) 119 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  63. S.V. Ketov, Conformal field theory, World Scientific, Singapore (1995), pag. 486.

    MATH  Google Scholar 

  64. M.B. Green, J.H. Schwarz and E. Witten, Superstring theory: volumes 1 & 2, Cambridge University Press, Cambridge U.K. (1987).

    Google Scholar 

  65. J. Polchinski, String theory. Volumes 1 & 2, Cambridge University Press, Cambridge U.K. (1998), pag. 402.

    Book  Google Scholar 

  66. N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099].

    Article  MATH  MathSciNet  Google Scholar 

  67. M. Gualtieri, Generalized complex geometry, math/0401221.

  68. A. Sevrin and J. Troost, Off-shell formulation of N = 2 non-linear σ-models, Nucl. Phys. B 492 (1997) 623 [hep-th/9610102] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  69. U. Lindström, Generalized N = (2, 2) supersymmetric non-linear σ-models, Phys. Lett. B 587 (2004) 216 [hep-th/0401100] [SPIRES].

    ADS  Google Scholar 

  70. U. Lindström, R. Minasian, A. Tomasiello and M. Zabzine, Generalized complex manifolds and supersymmetry, Commun. Math. Phys. 257 (2005) 235 [hep-th/0405085] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  71. U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler geometry and manifest N = (2, 2) supersymmetric nonlinear σ-models, JHEP 07 (2005) 067 [hep-th/0411186] [SPIRES].

    Article  ADS  Google Scholar 

  72. U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler manifolds and off-shell supersymmetry, Commun. Math. Phys. 269 (2007) 833 [hep-th/0512164] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  73. M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [SPIRES].

    Article  ADS  Google Scholar 

  74. M. Goteman and U. Lindström, Pseudo-hyperKähler geometry and generalized Kähler geometry, arXiv:0903.2376 [SPIRES].

  75. E. Ivanov and A. Sutulin, σ-models in (4, 4) harmonic superspace, Nucl. Phys. B 432 (1994) 246 [hep-th/9404098] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  76. E. Ivanov and A. Sutulin, More on (4, 4) supermultiplets in SU(2) × SU(2) harmonic superspace, Class. Quant. Grav. 14 (1997) 843 [hep-th/9604186] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  77. S. Bellucci and E. Ivanov, N = (4, 4), 2D supergravity in SU(2) × SU(2) harmonic superspace, Nucl. Phys. B 587 (2000) 445 [hep-th/0003154] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  78. S.J. Gates Jr., L. Lu and R.N. Oerter, Simplified SU(2) spinning string superspace supergravity, Phys. Lett. B 218 (1989) 33 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  79. S.J. Gates Jr., Y. Hassoun and P. van Nieuwenhuizen, Auxiliary fields for d = 2, N = 4 supergravity, Nucl. Phys. B 317 (1989) 302 [SPIRES].

    Article  ADS  Google Scholar 

  80. M. Pernici and P. van Nieuwenhuizen, A covariant action for the SU(2) spinning string as a hyperKähler or quaternionic nonlinear σ-model, Phys. Lett. B 169 (1986) 381 [SPIRES].

    ADS  Google Scholar 

  81. K. Schoutens, Structure of D = 2 conformal supergravity and covariant actions for strings, Nucl. Phys. B 292 (1987) 150 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  82. S.J. Gates Jr., Superspace formulation of new nonlinear σ-models, Nucl. Phys. B 238 (1984) 349 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  83. E.A. Ivanov and S.O. Krivonos, N = 4 superLiouville equation, J. Phys. A 17 (1984) L671 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  84. E.A. Ivanov and S.O. Krivonos, N = 4 superextension of the Liouville equation with quaternionic structure, Theor. Math. Phys. 63 (1985) 477 [Teor. Mat. Fiz. 63 (1985) 230] [SPIRES].

    Article  MathSciNet  Google Scholar 

  85. E.A. Ivanov, S.O. Krivonos and V.M. Leviant, A new class of superconformal σ-models with the Wess-Zumino action, Nucl. Phys. B 304 (1988) 601 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  86. P.S. Howe and R.W. Tucker, Scale invariance in superspace, Phys. Lett. B 80 (1978) 138 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  87. W. Siegel, Some extended supersymmetric two-dimensional scalar multiplets, Class. Quant. Grav. 2 (1985) L41 [SPIRES].

    Article  ADS  Google Scholar 

  88. S.J. Gates Jr. and W. Merrell, D = 2 N = (2, 2) semi chiral vector multiplet, JHEP 10 (2007) 035 [arXiv:0705.3207] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  89. U. Lindström, M. Roček, I. Ryb, R. von Unge and M. Zabzine, New N = (2, 2) vector multiplets, JHEP 08 (2007) 008 [arXiv:0705.3201] [SPIRES].

    Article  ADS  Google Scholar 

  90. R. Grimm, M. Sohnius and J. Wess, Extended supersymmetry and gauge theories, Nucl. Phys. B 133 (1978) 275 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  91. G. Tartaglino-Mazzucchelli, private notes.

  92. W. Siegel, Chiral actions for N = 2 supersymmetric tensor multiplets, Phys. Lett. B 153 (1985) 51 [SPIRES].

    ADS  Google Scholar 

  93. S.J. Gates Jr. and G. Tartaglino-Mazzucchelli, Ectoplasm & superspace integration measure for 2D supergravity with four spinorial supercurrents, J. Phys. A 43 (2010) 095401 [arXiv:0907.5264] [SPIRES].

    ADS  Google Scholar 

  94. S.J. Gates Jr. and A. Morrison, A derivation of an off-shell N = (2, 2) supergravity chiral projection operator, J. Phys. A 42 (2009) 442002 [arXiv:0901.4165] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  95. P.S. Howe and G. Papadopoulos, N = 2, D = 2 supergeometry, Class. Quant. Grav. 4 (1987) 11 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  96. M.T. Grisaru and M.E. Wehlau, Prepotentials for (2, 2) supergravity, Int. J. Mod. Phys. A 10 (1995) 753 [hep-th/9409043] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  97. S.J. Gates Jr., M.T. Grisaru and M.E. Wehlau, A study of general 2D, N = 2 matter coupled to supergravity in superspace, Nucl. Phys. B 460 (1996) 579 [hep-th/9509021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  98. S.V. Ketov, C. Unkmeir and S.-O. Moch, (4, 4) superfield supergravity, Class. Quant. Grav. 14 (1997) 285 [hep-th/9608131] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  99. N. Dragon, Torsion and curvature in extended supergravity, Z. Phys. C 2 (1979) 29 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  100. G. Tartaglino-Mazzucchelli, On 2D N = (4, 4) superspace supergravity, arXiv:0912.5300 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Tartaglino-Mazzucchelli.

Additional information

ArXiv ePrint: 0911.2546

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tartaglino-Mazzucchelli, G. 2D \( \mathcal{N} = \left( {4,4} \right) \) superspace supergravity and bi-projective superfields. J. High Energ. Phys. 2010, 34 (2010). https://doi.org/10.1007/JHEP04(2010)034

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2010)034

Keywords

Navigation