Skip to main content
Log in

On the influence of three-point functions on the propagators of Landau gauge Yang-Mills theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We solve the Dyson-Schwinger equations of the ghost and gluon propagators of Landau gauge Yang-Mills theory together with that of the ghost-gluon vertex. The latter plays a central role in many truncation schemes for functional equations. By including it dynamically we can determine its influence on the propagators. We also suggest a new model for the three-gluon vertex motivated by lattice data which plays a crucial role to obtain stable solutions when the ghost-gluon vertex is included. We find that both vertices have a sizable quantitative impact on the mid-momentum regime and contribute to the reduction of the gap between lattice and Dyson-Schwinger equation results. Furthermore, we establish that the three-gluon vertex dressing turns negative at low momenta as suggested by lattice results in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Taylor, Ward identities and charge renormalization of the Yang-Mills field, Nucl. Phys. B 33 (1971) 436 [INSPIRE].

    Article  ADS  Google Scholar 

  2. C. Lerche and L. von Smekal, On the infrared exponent for gluon and ghost propagation in Landau gauge QCD, Phys. Rev. D 65 (2002) 125006 [hep-ph/0202194] [INSPIRE].

    ADS  Google Scholar 

  3. W. Schleifenbaum, A. Maas, J. Wambach and R. Alkofer, Infrared behaviour of the ghost-gluon vertex in Landau gauge Yang-Mills theory, Phys. Rev. D 72 (2005) 014017 [hep-ph/0411052] [INSPIRE].

    ADS  Google Scholar 

  4. W. Schleifenbaum, M. Leder and H. Reinhardt, Infrared analysis of propagators and vertices of Yang-Mills theory in Landau and Coulomb gauge, Phys. Rev. D 73 (2006) 125019 [hep-th/0605115] [INSPIRE].

    ADS  Google Scholar 

  5. R. Alkofer, M.Q. Huber and K. Schwenzer, Infrared singularities in Landau gauge Yang-Mills theory, Phys. Rev. D 81 (2010) 105010 [arXiv:0801.2762] [INSPIRE].

    ADS  Google Scholar 

  6. R. Alkofer, M.Q. Huber and K. Schwenzer, Infrared behavior of three-point functions in Landau gauge Yang-Mills theory, Eur. Phys. J. C 62 (2009) 761 [arXiv:0812.4045] [INSPIRE].

    Article  ADS  Google Scholar 

  7. C.S. Fischer and J.M. Pawlowski, Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory II, Phys. Rev. D 80 (2009) 025023 [arXiv:0903.2193] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. P. Boucaud, D. Dudal, J. Leroy, O. Pene and J. Rodriguez-Quintero, On the leading OPE corrections to the ghost-gluon vertex and the Taylor theorem, JHEP 12 (2011) 018 [arXiv:1109.3803] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. D. Dudal, O. Oliveira and J. Rodriguez-Quintero, Nontrivial ghost-gluon vertex and the match of the Refined-Gribov-Zwanziger, Dyson-Schwinger equations, and lattice Yang-Mills propagators, Phys. Rev. D 86 (2012) 105005 [Addendum ibid. D 86 (2012) 109902] [arXiv:1207.5118] [INSPIRE].

  10. A. Cucchieri, T. Mendes and A. Mihara, Numerical study of the ghost-gluon vertex in Landau gauge, JHEP 12 (2004) 012 [hep-lat/0408034] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Cucchieri, A. Maas and T. Mendes, Exploratory study of three-point Greens functions in Landau-gauge Yang-Mills theory, Phys. Rev. D 74 (2006) 014503 [hep-lat/0605011] [INSPIRE].

    ADS  Google Scholar 

  12. A. Sternbeck, The infrared behavior of lattice QCD Greens functions, Ph.D. Thesis, Humboldt-Universität zu Berlin (2006) [hep-lat/0609016] [INSPIRE].

  13. A. Cucchieri, A. Maas and T. Mendes, Three-point vertices in Landau-gauge Yang-Mills theory, Phys. Rev. D 77 (2008) 094510 [arXiv:0803.1798] [INSPIRE].

    ADS  Google Scholar 

  14. M. Pennington and D. Wilson, Are the dressed gluon and ghost propagators in the Landau gauge presently determined in the confinement regime of QCD?, Phys. Rev. D 84 (2011) 119901 [arXiv:1109.2117] [INSPIRE].

    ADS  Google Scholar 

  15. L. Fister and J.M. Pawlowski, Yang-Mills correlation functions at finite temperature, arXiv:1112.5440 [INSPIRE].

  16. A.I. Davydychev, P. Osland and O.V. Tarasov, Three gluon vertex in arbitrary gauge and dimension, Phys. Rev. D 54 (1996) 4087 [Erratum ibid. D 59 (1999) 109901] [hep-ph/9605348] [INSPIRE].

  17. K. Chetyrkin and A. Retey, Three loop three linear vertices and four loop similar to MOM β-functions in massless QCD, hep-ph/0007088 [INSPIRE].

  18. W. Schleifenbaum, The ghost-gluon vertex in Landau gauge Yang-Mills theory in four and three dimensions, Diploma Thesis, Eberhard-Karls-Universität zu Tübingen (2004).

  19. R. Alkofer, C.S. Fischer and F.J. Llanes-Estrada, Vertex functions and infrared fixed point in Landau gauge SU(N) Yang-Mills theory, Phys. Lett. B 611 (2005) 279 [Erratum ibid. B 670 (2009) 460] [hep-th/0412330] [INSPIRE].

  20. M.Q. Huber and L. von Smekal, Going beyond the propagators of Landau gauge Yang-Mills theory, PoS(Confinement X)062 [arXiv:1301.3080] [INSPIRE].

  21. L. von Smekal, R. Alkofer and A. Hauck, The infrared behavior of gluon and ghost propagators in Landau gauge QCD, Phys. Rev. Lett. 79 (1997) 3591 [hep-ph/9705242] [INSPIRE].

    Article  ADS  Google Scholar 

  22. L. von Smekal, A. Hauck and R. Alkofer, A solution to coupled Dyson-Schwinger equations for gluons and ghosts in Landau gauge, Annals Phys. 267 (1998) 1 [hep-ph/9707327] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. D. Atkinson and J.C.R. Bloch, Running coupling in nonperturbative QCD. 1. Bare vertices and y-max approximation, Phys. Rev. D 58 (1998) 094036 [hep-ph/9712459] [INSPIRE].

    ADS  Google Scholar 

  24. D. Zwanziger, Nonperturbative Landau gauge and infrared critical exponents in QCD, Phys. Rev. D 65 (2002) 094039 [hep-th/0109224] [INSPIRE].

    ADS  Google Scholar 

  25. D. Zwanziger, Time independent stochastic quantization, DS equations and infrared critical exponents in QCD, Phys. Rev. D 67 (2003) 105001 [hep-th/0206053] [INSPIRE].

    ADS  Google Scholar 

  26. C.S. Fischer and R. Alkofer, Infrared exponents and running coupling of SU(N) Yang-Mills theories, Phys. Lett. B 536 (2002) 177 [hep-ph/0202202] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.M. Pawlowski, D.F. Litim, S. Nedelko and L. von Smekal, Infrared behavior and fixed points in Landau gauge QCD, Phys. Rev. Lett. 93 (2004) 152002 [hep-th/0312324] [INSPIRE].

    Article  ADS  Google Scholar 

  28. D. Zwanziger, Nonperturbative Faddeev-Popov formula and infrared limit of QCD, Phys. Rev. D 69 (2004) 016002 [hep-ph/0303028] [INSPIRE].

    ADS  Google Scholar 

  29. A. Aguilar, D. Binosi and J. Papavassiliou, Gluon and ghost propagators in the Landau gauge: deriving lattice results from Schwinger-Dyson equations, Phys. Rev. D 78 (2008) 025010 [arXiv:0802.1870] [INSPIRE].

    ADS  Google Scholar 

  30. C.S. Fischer, A. Maas and J.M. Pawlowski, On the infrared behavior of Landau gauge Yang-Mills theory, Annals Phys. 324 (2009) 2408 [arXiv:0810.1987] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. M.Q. Huber, R. Alkofer and S.P. Sorella, Infrared analysis of Dyson-Schwinger equations taking into account the Gribov horizon in Landau gauge, Phys. Rev. D 81 (2010) 065003 [arXiv:0910.5604] [INSPIRE].

    ADS  Google Scholar 

  32. F.J. Llanes-Estrada and R. Williams, Two infrared Yang-Mills solutions in stochastic quantization and in an effective action formalism, Phys. Rev. D 86 (2012) 065034 [arXiv:1207.5950] [INSPIRE].

    ADS  Google Scholar 

  33. S. Strauss, C.S. Fischer and C. Kellermann, Analytic structure of the Landau gauge gluon propagator, Phys. Rev. Lett. 109 (2012) 252001 [arXiv:1208.6239] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J.C.R. Bloch, A. Cucchieri, K. Langfeld and T. Mendes, Propagators and running coupling from SU(2) lattice gauge theory, Nucl. Phys. B 687 (2004) 76 [hep-lat/0312036] [INSPIRE].

    Article  ADS  Google Scholar 

  35. I.L. Bogolubsky, G. Burgio, M. Müller-Preussker and V.K. Mitrjushkin, Landau gauge ghost and gluon propagators in SU(2) lattice gauge theory: Gribov ambiguity revisited, Phys. Rev. D 74 (2006) 034503 [hep-lat/0511056] [INSPIRE].

    ADS  Google Scholar 

  36. A. Sternbeck, E.-M. Ilgenfritz, M. Müller-Preussker and A. Schiller, Towards the infrared limit in SU(3) Landau gauge lattice gluodynamics, Phys. Rev. D 72 (2005) 014507 [hep-lat/0506007] [INSPIRE].

    ADS  Google Scholar 

  37. E.-M. Ilgenfritz, M. Müller-Preussker, A. Sternbeck, A. Schiller and I.L. Bogolubsky, Landau gauge gluon and ghost propagators from lattice QCD, Braz. J. Phys. 37 (2007) 193 [hep-lat/0609043] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Cucchieri and T. Mendes, Propagators, running coupling and condensates in lattice QCD, Braz. J. Phys. 37 (2007) 484 [hep-ph/0605224] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Sternbeck, E.-M. Ilgenfritz, M. Müller-Preussker, A. Schiller and I.L. Bogolubsky, Lattice study of the infrared behavior of QCD Greens functions in Landau gauge, PoS(LAT2006)076 [hep-lat/0610053] [INSPIRE].

  40. I.L. Bogolubsky et al., Improved Landau gauge fixing and the suppression of finite-volume effects of the lattice gluon propagator, Phys. Rev. D 77 (2008) 014504 [Erratum ibid. D 77 (2008) 039902] [arXiv:0707.3611] [INSPIRE].

  41. A. Cucchieri and T. Mendes, Constraints on the IR behavior of the gluon propagator in Yang-Mills theories, Phys. Rev. Lett. 100 (2008) 241601 [arXiv:0712.3517] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Cucchieri and T. Mendes, Whats up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices, PoS(LATTICE 2007)297 [arXiv:0710.0412] [INSPIRE].

  43. O. Oliveira and P.J. Silva, Infrared gluon and ghost propagators exponents from lattice QCD, Eur. Phys. J. C 62 (2009) 525 [arXiv:0705.0964] [INSPIRE].

    Article  ADS  Google Scholar 

  44. I.L. Bogolubsky, E.M. Ilgenfritz, M. Müller-Preussker and A. Sternbeck, The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes, PoS(LATTICE 2007)290 [arXiv:0710.1968] [INSPIRE].

  45. A. Cucchieri and T. Mendes, Constraints on the IR behavior of the ghost propagator in Yang-Mills theories, Phys. Rev. D 78 (2008) 094503 [arXiv:0804.2371] [INSPIRE].

    ADS  Google Scholar 

  46. O. Oliveira and P. Bicudo, Running gluon mass from Landau gauge lattice QCD propagator, J. Phys. G 38 (2011) 045003 [arXiv:1002.4151] [INSPIRE].

    Article  ADS  Google Scholar 

  47. O. Oliveira and P.J. Silva, The lattice Landau gauge gluon propagator: lattice spacing and volume dependence, Phys. Rev. D 86 (2012) 114513 [arXiv:1207.3029] [INSPIRE].

    ADS  Google Scholar 

  48. A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti and J. Rodriguez-Quintero, Quark flavour effects on gluon and ghost propagators, Phys. Rev. D 86 (2012) 074512 [arXiv:1208.0795] [INSPIRE].

    ADS  Google Scholar 

  49. A. Sternbeck and M. Müller-Preussker, Lattice evidence for the family of decoupling solutions of Landau gauge Yang-Mills theory, arXiv:1211.3057 [INSPIRE].

  50. A. Cucchieri, Gribov copies in the minimal Landau gauge: the influence on gluon and ghost propagators, Nucl. Phys. B 508 (1997) 353 [hep-lat/9705005] [INSPIRE].

    ADS  Google Scholar 

  51. A. Maas, Constructing non-perturbative gauges using correlation functions, Phys. Lett. B 689 (2010) 107 [arXiv:0907.5185] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. Maas, Describing gauge bosons at zero and finite temperature, Phys. Rept. 524 (2013) 203 [arXiv:1106.3942] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. P. Boucaud et al., IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation, JHEP 06 (2008) 012 [arXiv:0801.2721] [INSPIRE].

    Article  ADS  Google Scholar 

  54. D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel and H. Verschelde, A refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results, Phys. Rev. D 78 (2008) 065047 [arXiv:0806.4348] [INSPIRE].

    ADS  Google Scholar 

  55. A. Maas, Local and global gauge-fixing, PoS(Confinement X)034 [arXiv:1301.2965] [INSPIRE].

  56. V. Gribov, Quantization of nonabelian gauge theories, Nucl. Phys. B 139 (1978) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. D. Zwanziger, Local and renormalizable action from the Gribov horizon, Nucl. Phys. B 323 (1989) 513 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. N. Vandersickel and D. Zwanziger, The Gribov problem and QCD dynamics, Phys. Rept. 520 (2012) 175 [arXiv:1202.1491] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. D. Dudal, S.P. Sorella, N. Vandersickel and H. Verschelde, New features of the gluon and ghost propagator in the infrared region from the Gribov-Zwanziger approach, Phys. Rev. D 77 (2008) 071501 [arXiv:0711.4496] [INSPIRE].

    ADS  Google Scholar 

  60. D. Dudal, S.P. Sorella and N. Vandersickel, The dynamical origin of the refinement of the Gribov-Zwanziger theory, Phys. Rev. D 84 (2011) 065039 [arXiv:1105.3371] [INSPIRE].

    ADS  Google Scholar 

  61. J. Gracey, Alternative refined Gribov-Zwanziger Lagrangian, Phys. Rev. D 82 (2010) 085032 [arXiv:1009.3889] [INSPIRE].

    ADS  Google Scholar 

  62. J. Serreau and M. Tissier, Lifting the Gribov ambiguity in Yang-Mills theories, Phys. Lett. B 712 (2012) 97 [arXiv:1202.3432] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. M.Q. Huber, R. Alkofer and S.P. Sorella, Non-perturbative analysis of the Gribov-Zwanziger action, AIP Conf. Proc. 1343 (2011) 158 [arXiv:1010.4802] [INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Sternbeck and L. von Smekal, Infrared exponents and the strong-coupling limit in lattice Landau gauge, Eur. Phys. J. C 68 (2010) 487 [arXiv:0811.4300] [INSPIRE].

    Article  ADS  Google Scholar 

  65. A. Cucchieri and T. Mendes, Landau-gauge propagators in Yang-Mills theories at β = 0: massive solution versus conformal scaling, Phys. Rev. D 81 (2010) 016005 [arXiv:0904.4033] [INSPIRE].

    ADS  Google Scholar 

  66. A. Maas, J.M. Pawlowski, D. Spielmann, A. Sternbeck and L. von Smekal, Strong-coupling study of the Gribov ambiguity in lattice Landau gauge, Eur. Phys. J. C 68 (2010) 183 [arXiv:0912.4203] [INSPIRE].

    Article  ADS  Google Scholar 

  67. M.Q. Huber, A. Maas and L. von Smekal, Two- and three-point functions in two-dimensional Landau-gauge Yang-Mills theory: continuum results, JHEP 11 (2012) 035 [arXiv:1207.0222] [INSPIRE].

    Article  ADS  Google Scholar 

  68. K. Chetyrkin and T. Seidensticker, Two loop QCD vertices and three loop MOM β-functions, Phys. Lett. B 495 (2000) 74 [hep-ph/0008094] [INSPIRE].

    Article  ADS  Google Scholar 

  69. W.J. Marciano and H. Pagels, Quantum chromodynamics: a review, Phys. Rept. 36 (1978) 137 [INSPIRE].

    Article  ADS  Google Scholar 

  70. P. Boucaud et al., The infrared behaviour of the pure Yang-Mills green functions, hep-ph/0507104 [INSPIRE].

  71. L. von Smekal, K. Maltman and A. Sternbeck, The strong coupling and its running to four loops in a minimal MOM scheme, Phys. Lett. B 681 (2009) 336 [arXiv:0903.1696] [INSPIRE].

    Article  ADS  Google Scholar 

  72. C.S. Fischer, Nonperturbative propagators, running coupling and dynamical mass generation in ghost-anti-ghost symmetric gauges in QCD, Ph.D. Thesis, Eberhard-Karls-Universität zu Tübingen (2003) [hep-ph/0304233] [INSPIRE].

  73. C.S. Fischer, R. Alkofer and H. Reinhardt, The elusiveness of infrared critical exponents in Landau gauge Yang-Mills theories, Phys. Rev. D 65 (2002) 094008 [hep-ph/0202195] [INSPIRE].

    ADS  Google Scholar 

  74. J.C. Bloch, Two loop improved truncation of the ghost gluon Dyson-Schwinger equations: multiplicatively renormalizable propagators and nonperturbative running coupling, Few Body Syst. 33 (2003) 111 [hep-ph/0303125] [INSPIRE].

    Article  ADS  Google Scholar 

  75. R. Alkofer, M.Q. Huber, V. Mader and A. Windisch, On the infrared behaviour of QCD Green functions in the maximally Abelian gauge, PoS(QCD-TNT-II)003 [arXiv:1112.6173] [INSPIRE].

  76. B. Alles et al., α s from the nonperturbatively renormalised lattice three gluon vertex, Nucl. Phys. B 502 (1997) 325 [hep-lat/9605033] [INSPIRE].

    Article  ADS  Google Scholar 

  77. P. Boucaud, J. Leroy, J. Micheli, O. Pene and C. Roiesnel, Lattice calculation of α s in momentum scheme, JHEP 10 (1998) 017 [hep-ph/9810322] [INSPIRE].

    Article  ADS  Google Scholar 

  78. A. Maas, Two and three-point Greens functions in two-dimensional Landau-gauge Yang-Mills theory, Phys. Rev. D 75 (2007) 116004 [arXiv:0704.0722] [INSPIRE].

    ADS  Google Scholar 

  79. M.Q. Huber, R. Alkofer, C.S. Fischer and K. Schwenzer, The infrared behavior of Landau gauge Yang-Mills theory in D = 2, D = 3 and D = 4 dimensions, Phys. Lett. B 659 (2008) 434 [arXiv:0705.3809] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. A. Cucchieri, D. Dudal and N. Vandersickel, The no-pole condition in Landau gauge: properties of the Gribov ghost form-factor and a constraint on the 2d gluon propagator, Phys. Rev. D 85 (2012) 085025 [arXiv:1202.1912] [INSPIRE].

    ADS  Google Scholar 

  81. D. Zwanziger, Some exact properties of the gluon propagator, arXiv:1209.1974 [INSPIRE].

  82. R. Alkofer, C.S. Fischer, F.J. Llanes-Estrada and K. Schwenzer, The quark-gluon vertex in Landau gauge QCD: its role in dynamical chiral symmetry breaking and quark confinement, Annals Phys. 324 (2009) 106 [arXiv:0804.3042] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. J.C. Bloch, Multiplicative renormalizability of gluon and ghost propagators in QCD, Phys. Rev. D 64 (2001) 116011 [hep-ph/0106031] [INSPIRE].

    ADS  Google Scholar 

  84. J. Berges, N-particle irreducible effective action techniques for gauge theories, Phys. Rev. D 70 (2004) 105010 [hep-ph/0401172] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  85. N. Brown and M.R. Pennington, Studies of confinement: how the gluon propagates, Phys. Rev. D 39 (1989) 2723 [INSPIRE].

    ADS  Google Scholar 

  86. C.S. Fischer and L. von Smekal, Scaling, decoupling and transversality of the gluon propagator, AIP Conf. Proc. 1343 (2011) 247 [arXiv:1011.6482] [INSPIRE].

    Article  ADS  Google Scholar 

  87. M.Q. Huber and M. Mitter, CrasyDSE: a framework for solving Dyson-Schwinger equations, Comput. Phys. Commun. 183 (2012) 2441 [arXiv:1112.5622] [INSPIRE].

    Article  ADS  Google Scholar 

  88. A. Maas, Solving a set of truncated Dyson-Schwinger equations with a globally converging method, Comput. Phys. Commun. 175 (2006) 167 [hep-ph/0504110] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  89. M. Hopfer, R. Alkofer and G. Haase, Solving the ghost-gluon system of Yang-Mills theory on GPUs, Comput. Phys. Commun. 184 (2013) 1183 [arXiv:1206.1779] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  90. A. Sternbeck, L. von Smekal, D. Leinweber and A. Williams, Comparing SU(2) to SU(3) gluodynamics on large lattices, PoS(LATTICE 2007)340 [arXiv:0710.1982] [INSPIRE].

  91. A. Sternbeck et al., QCD Lambda parameter from Landau-gauge gluon and ghost correlations, PoS(LAT2009)210 [arXiv:1003.1585] [INSPIRE].

  92. A. Sternbeck, K. Maltman, M. Muller-Preussker and L. von Smekal, Determination of \( {\varLambda^{{\overline{\mathrm{MS}}}}} \) from the gluon and ghost propagators in Landau gauge, PoS(Lattice 2012)243 [arXiv:1212.2039] [INSPIRE].

  93. D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].

    Article  ADS  Google Scholar 

  94. S. Wolfram, The Mathematica book, Wolfram Media and Cambridge University Press (2004).

  95. R. Alkofer, M.Q. Huber and K. Schwenzer, Algorithmic derivation of Dyson-Schwinger equations, Comput. Phys. Commun. 180 (2009) 965 [arXiv:0808.2939] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  96. M.Q. Huber and J. Braun, Algorithmic derivation of functional renormalization group equations and Dyson-Schwinger equations, Comput. Phys. Commun. 183 (2012) 1290 [arXiv:1102.5307] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Q. Huber.

Additional information

ArXiv ePrint: 1211.6092

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, M.Q., von Smekal, L. On the influence of three-point functions on the propagators of Landau gauge Yang-Mills theory. J. High Energ. Phys. 2013, 149 (2013). https://doi.org/10.1007/JHEP04(2013)149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)149

Keywords

Navigation